Технологическая схема установки алкилирования бензола пропиленом.

Технологическая схема установки алкилирования бензола пропиленом.

Алкилирование бензола пропиленом в присутствие катализатора (хлористого аммония) позволяет получить изопропилбензол (кумол) и этилбензол. Высокооктановый компонент авиационного бензина – кумол при окисление дает фенол и ацетон. Высокотемпературная дегидрогенизация этил бензола дает стирол.

Катализаторный комплекс (рис. 45), состоящий из бензола, треххлористого алюминия, полиалкидбензолов и воды готовится в аппарате с мешалкой 1 и подается в гребенку алкилатора 2, сюда же поступает сырье – пропан-пропиленовая фракция (ППФ), бензольная шихта, полиалкилбензолы (ПАБ), бензольный конденсат. Процесс алкилирования проводится при температуре 120 – 1300С и давлении 2 – 5 атм. Алкилирование – реакция экзотермическая. Выделяющееся тепло снимается испаряющимся бензолом, который в смеси с пропаном из верхней части алкилатора направляется на конденсацию в два конденсатора 3 и 4. Сконденсировавшийся бензол возвращается в гребенку алкилатора. Реакционная масса непрерывно отводится из верхней части алкилатора в отстойник 8, где отстоявшийся каталитический комплекс отделяется и направляется в гребенку алкилатора. Реакционная масса пройдя холодильник 9, дросселируются в сборнике 10 до 1 – 2 атм и после дополнительного отстойника 12 направляется на водную промывку для разложения увлеченного каталитического комплекса. Смешение реакционной массы с водой происходит в смесителе 14. В емкости 15 происходит отстой углеводородной части от воды. Верхний углеводородный слой поступает в насадочную колонну 16 на повторную промывкуводой. В отстойнике 17 вода отделяется от реакционной массы, которая подается на нейтрализацию щелочью в смеситель 19 и отстойник 20. Р еакционная масса забирается насосом 24, подается в колонну 21 для промывки от щелочи, затем поступает в сборник 22 и далее направляется на ректификацию. Попановая фракция, содержащая бензол, из конденсатора 4 и сепаратора 11 отводится на абсорбцию бензола ПАБами в скруббер 5, очистку щелочью и водой в скрубберах 6 и 7 и поступает после компрессии на установку пиролиза.

Технологическая схема сернокислотного алкилирования изобутана бутиленами

Рисунок 45 8. Технологическая схема сернокислотного алкилирования изобутана бутиленами.

Наибольшее применение алкилирование (замена в углеводороде водорода на алкильную группу) находит при производстве технического изооктана – алкилата, являющегося важным компонентом при производстве высокооктановых моторных топлив (рис. 46). Алкилат получается прямым синтезом изобутана с бутиленами в присутствие катализатора – серной кислоты. В зависимости конструкции реактора и конструкции погоноразделения может быть несколько вариантов технологической схемы сернокислотного алкилирования. Рассмотрим установку с каскадным реактором.
Исходное сырье – бутан-бутиленовая фракция (ББФ) из емкости 1 через теплообменник 3 и холодильник 4 подается в реактор 5. Реактор представляет собой цилиндрический лепак, состоящий из двух секций: реакционной и отстойной. Реакционная секция имеет 5 каскадов, в каждом из которых расположена мешалка, обеспечивающая интенсивный контакт кислоты с реагирующими углеводородами. Исходное сырье подается в каждый каскад, а циркулирующий изобутан и серная кислота – в первый каскад и последовательно перетекает в следующие. Съем тепла реакции осуществляется частичным испарением циркулирующего изобутана и полным испарением содержащегося в сырье пропана в каждом каскаде. Пары изобутана и пропана поступают в коллектор, соединяющий реакционную зону с отстойником, изкоторой пары направляются на прием компрессора 27. После компримирования пары полностью конденсируются и охлаждаются в конденсаторе – холодильнике 28. Конденсат поступает в аккумулятор 29, из которого направляется в пропановую колонну 31 для отделения балансового количества пропана от циркулирующего изобутана. Изобутан с низа колонны 31 поступает в холодильник 36, а оттуда – в первый каскад реактора.
Смесь продуктов реакции, серной кислоты и циркулирующего изобутана перетекает в отстойную секцию, где оседает основная масса кислоты, которая далее возвращается в первый каскад реактора. Продукты реакции и циркулирующий изобутан насосом 6 через сырьевой холодильник 3 подаются на нейтрализацию и водную промывку (аппараты 7, 8, 9).

После водяного отстойника 10 они направляются на фракционирование в ряд колонн. С верха колонны 12 отводится изобутан и поступает в реактор. С низа колонны 12 смесь бутана, пентана и алкилата поступает в бутан-пентановую колонну 16, где с верха отбирается бутан-пентановая фракция, отводимая в заводские емкости. Нижний продукт (алкилаты) поступает в колонну вторичной перегонки 22. Головным погоном колонны 22 является авиационный алкилат – изооктан, а остаточным мотоалкилат.
Основные факторы рассмотренного процесса: 1) молярное отношение изобутана к бутиленам в реакционной зоне не менее 5:1. Чем выше это отношение, тем больший выход алкилата и лучше его антидетанационные свойства; 2) необходимое время контакта в реакторе 20 – 30 мин; 3) температура процесса 0 – 100С; 4) давление в реакторе 3 – 12 атм; 5) лучшие результаты алкилирования получаются с использованием 96 – 98% - ной серной кислоты.
Каскадный трехступенчатый реактор для алкилирования.Наиболее совершенным является каскадный реактор (рис. 47). Горизонтальный аппарат цилиндрической формы имеет несколько зон смешения, снабженных мешалками, и двухсекционную зону отстоя. Циркулирующие изобутан и серная кислота поступают в первую зону смешения. Исходное сырье, смесь изобутана с олефинами, равномерно распределяется по всем зонам смешения. Благодаря этому в каждой зоне обеспечен значительный избыток изобутана. В последних двух секциях кислота отделяется от углеводородного слоя. Температура и давление в реакторе обеспечивают частичное испарение углеводородной фазы реактора, в основном наиболее легкого ее компонента – изобутана. Испарившийся газ отсасывают компрессором и после охлаждения и конденсации вновь возвращают в реакционную зону. При испарение изобутана тепло реакции снимается. Температура в реакторе поддерживается на заданном уровне автоматически.

Реактор сернокислотного алкилирования изобутана бутиленами

Число зон смешения может быть от двух до пяти. Существуют установки с реактором, в котором имеется шесть зон смешения (по три с каждой стороны) и зона отстоя, расположенная в средней части аппарата.
Наличие реакторов каскадного типа, работающих по принцепу “автоохлождение”, упрощает и удешевляет установки алкилирования, так как это позволяет отказатся от хладоагента (аммиака, пропана).
Описание конструкции вертикального реактора – контактора для алкилирования. Вертикальный реактор – контактор расчитан на установки средней мощности (рис. 48). В контакторе при помощи турбосмесителя происходит смешение углеводородов с кислотой до образования эмульсии и ее циркуляции. Рабочий объем контактора разделен цилиндрической перегородкой. Эмульсия поднимается по наружнему кольцевому сечению и опускается по внутреннему цилиндру контактора, где от нее отнимается тепло реакции через поверхность охлаждающих трубок. Для упорядочения восходящего потока смеси к цилиндрической перегородке приварены вертикальные ребра.

Вертикальный реактор – контактор

Реакционная смесь охлаждается посредством двойных трубок (трубок фильда), через которые циркулирует хладогент – аммиак или пропан. Жидкий аммиак поступает на верхнюю решетку и, распределяясь по всем вутренним трубкам, проходит сверху вниз, затем переходит в трубки большого диаметра, испаряется и кольцевому зазору поднимается вверх.
Аммиачные пары поступают в зону парообразного аммиака контактора (между верхней и нижней решетками) и через расширительный бачок направляется на прием компрессора. Отвод тепла регулирует изменением давления в системе охлаждения.
Кислота вводится в верхнюю часть контактора, а свежее сырье – в нижнюю часть. Проконтактировавшая смесь непрерывно отводится с верха контактора в кислотный отстойник. Мешалка приводится во вращение от электромотора или паровой турбины через систему редукторов, расположенных под контактором.
Схема горизонтального реактора – контактора.

Схема горизонтального реактора – контактора

Горизонтальные контакторы снабжены U-образным пучком охлаждающих трубок (рис. 49). По сравнению с вертикальным контактором в горизонтальном аппарате более удачно осуществлены вводы сырья и катализатора, которые падают сразу в зону наиболее интенсивного смешения. Далее смесь направляется по наружнему кольцевому пространству и в противоположном конце аппарата устраняет необходимость в зубчатой передачи к приводу и облегчает обслуживание контактора. В аппарате происходит чрезвычайно интенсивная циркуляция, достигающая на крупных установках около 200 м3/мин. При такой циркуляции поступающая смесь практически мгновенно смешивается с эмульсией, заполняющий реактор. Соотношение изобутана к олефину в месте поступления сырьевого потока достигает 500 молей к 1 молю. Контакторы этого типа конструктивно проще. Емкость их больше, чем у вертикальных аппаратах и может быть увеличена до определенных пределов. Применение очень крупных контакторов ухудшает качество смешения, поэтому вместо одного очень мощного аппарата предпочитают устанавливать не менее трех – четырех контакторов меньшей мощности.

Наиболее благоприятным условием хорошего контакта и последующего нормального расслоения фаз является работа аппарата при скорости вращения мешалки в пределах 2200 до 2700 об/мин. Постоянное давление в контакторе (5 – 6 атм), поддерживаемое регулятором давления, обеспечивает проведение процесса в жидкой фазе. Съем тепла и поддержание требуемой температуры в контакторе осуществляется вводом жидкого аммиака с последующим испарением его на выходе из охлаждающих трубок.
Подготовка и первичная переработка нефти. 1. Промысловые установки стабилизации нефти.Добываемая из нефтяного пласта нефть содержит в своем составе значительные количества минеральных солей, воды, растворенного газа. Для транспортировки нефти на дальние расстояния она должна быть предварительно подготовлена, т.е. отделена от вышеуказанного баласта.Качество нефти, подготовленной к транспортировке, определяется ее обводненностью, содержанием минеральных солей и давлением насыщенных углеводородных паров. все эти характеристики должны находится в допустимых пределах во избежание нарушения режимов ее транспортировки по нефтепроводам.Подготовка нефти включает в себя процессы сепарации нефти от водной фазы, промывку нефти пресной водой для отделения солей, растворимых в нефти и отгонку из нефти растворенных легких углеводородов с доведением упругости паров до регламентных требований.В районах традиционной нефтедобычи (Урала – Поволжья) задача подготовки нефти решается комплексно на установках комплексной подготовки нефти (УКПН). При проведении процессов стабилизации нефти (отделение легких головных фракций) в этом случае одновременно ставится задача получения широкой фракции легких углеводородов (С2?С5), которые являются ценнейшим сырьем для нефтехимического синтеза. Стабилизация нефти обычно осуществляется ректификационным способом с использованием нефтестабилизационных колонн. Схемы нефтестабилизационных установок (НСУ) приведены на рис.Иногда применяется метод простой сепарации (разделение газообразной и жидкой фаз) при пониженных давлениях и повышенных температурах. Этот способ позволяет обеспечить требуемое качество стабильной нефти, но качество нефти оказывается неудовлетворительным.

 Схемы нефтестабилизационных установок (НСУ)

Яндекс.Метрика Rambler's Top100 www.megastock.com Здесь находится аттестат нашего WM идентификатора 000000000000
Проверить аттестат