Время пребывания, распределение времени пребывания, перемешивание в химических реакторах

Пример 4-1. В реальном реакторе проводится жидкофазная необратимая реакция первого порядка с изменением плотности реакционной смеси (увеличивается в 1,18 раза при xa = 1,0). Опыты с трассером дали следующие результаты:


Определить степень превращения ХА при k = 1,2-10-2 1/с, если действительное время пребывания в реакторе совпадает с действительным временем в опытах с трассером.

Пример 4-2, Реакция гидролиза А + B -> продукты описывается кинетическим уравнением второго порядка с константой скорости k = 0,11 1/с (1/кмоль/м3). Плотность реакционной системы в ходе реакции не меняется. Продукты в исходной смеси отсутствуют. Концентрации веществ в исходном растворе: CA0= 1,5-10-2 кмоль/м3; СB0=5,1-10-2 кмоль/м3. Данные опытов с трассером при той же скорости подачи, что и при проведении реакции (vо = 4-10-4 м3/с):

Определить степень превращения вещества А, используя формулу , и рассчитать объем реактора.

Пример 4-3. Обратимая реакция А <-(k1, k2)-> В протекает в трубчатом реакторе при постоянных значениях плотности, вязкости и температуры реакционной смеси. В начальный момент времени концентрация вещества В в системе равна нулю. Среднее время пребывания т = 300 с. Константы скорости прямой и обратной реакции равны k1=6,5-10-3 1/с и k1/=1,2-10-3 1/с. Определить степень превращения xa при ламинарном режиме (диффузией можно пренебречь). Сравнить полученную величину превращения со степенью превращения, рассчитанной для реактора идеального вытеснения.

Пример 4-4. В реальном реакторе предполагается проводить последовательную реакцию А –(k1)-> R –(k2)-> S, где k1 = 1,5-10-2 1/с и k2 = 0,3-10-2 1/с. Начальные концентрации продуктов СR0 = CS0=0. На основании опытов с трассером получены следующие результаты:

Какой из этих двух режимов лучше использовать для достижения наибольшего выхода по продукту К? Объяснить полученный результат. Рассчитать для этих двух режимов выход по продукту К, а также максимальный выход в идеальном реакторе.

Пример 4-5. Используя общую формулу , определить степень превращения вещества А в необратимой реакции второго порядка А + В —(k1)-> R + S при условии, что начальные концентрации имеют следующие значения: СA0 = СB0, СR0 = СS0 = 0. Реакция протекает в параллельной схеме аппаратов (рис. 4-2), составленной из реактора идеального смешения и реактора идеального вытеснения, причем после каждого аппарата степень превращения одинаковая. Принять
Определить соотношение объемов реакторов и сравнить найденное значение хл со степенью превращения, которая получается при использовании уравнений материального баланса, если объемные скорости подачи для каждого реактора оставить прежними. Объяснить результат.

Пример 4-6. Используя уравнение  показать, что в случае необратимой реакции первого порядка степень превращения, рассчитанная для системы, состоящей из реактора идеального смешения и реактора идеального вытеснения (рис. 4-3 и 4-4) остается одинаковой независимо от того, какой реактор в цепочке поставить первым.

Пример 4-7. Используя формулу  найти выражение для степени превращения, если система составлена из четырех последовательно соединенных реакторов идеального смешения одинакового объема, в которых протекает необратимая реакция первого порядка. Записать уравнения для E(0) и среднего времени пребывания.

Пример 4-8. Используя общую формулу  определить степень превращения для необратимой реакции, описываемой уравнением - r А = 1,4-10-3 Сд5 кмоль/(м3-с). Реакция протекает в системе последовательно соединенных реакторов идеального смешения и идеального вытеснения; CA0= 2,40 кмоль/м3; твыт =620 с; тсм=480 с. Изменение плотности реакционной смеси в ходе реакции не происходит.
Сравнить найденную величину со степенью превращения, которая получается при использовании уравнений материального баланса систем с последовательным соединением: 1) реактора идеального смешения и реактора идеального вытеснения; 2) реактора идеального вытеснения и реактора идеального смешения.

Пример 4-9. На основании опытов с трассером, проведенных для реального реактора, получены следующие данные:

При проведении необратимой реакции первого порядка без изменения плотности реакционной смеси в реакторе идеального вытеснения и той же скорости подачи, что и в случае опытов с трассером, степень превращения составляет ХА =0,728 (объем реактора идеального вытеснения равен объему реального реактора).

Рассчитать степень превращения: 1) по экспериментальным данным с трассером; 2) для диффузионной модели; 3) для модели последовательно соединенных реакторов идеального смешения.

Пример 4-10. На основании опытов с трассером, проведенных для реального реактора, получены следующие данные:

Для обратимой реакции А <-(k, k1)-> В (где k1=2-10-2 1/c, k1=2-10-3 1/c), которая проводится в реальном реакторе объемом V = 0,490 ма при скорости подачи vо = 4,5-10-3 м3/с (та же скорость подачи использовалась и в опытах с трассером), определить степень превращения:
1) по экспериментальным данным с трассером;
2) для модели реактор идеального смешения + «застойная зона» объем «застойной зоны» рассчитать на основании опыта с трассером);
3) для модели реактор идеального смешения -(- байпас, -если скорость подачи в линию байпаса составляет 4% от общей скорости;
4) для той же модели, если скорость подачи в линию байпаса составляет 8% от общей скорости.
Считать, что начальная концентрация продукта равна нулю.

Пример 4-11. При проведении обратимой реакции А <-(k, k1)-> В + S (k1 = 2,8-10-2 1/с, k1/ = 0,5-10-2 1/с) концентрации веществ В и S в начальный момент времени (СB0, и СS0) равны нулю. Данные опытов с трассером для реального реактора:

Определить:
1) степень превращения вещества А в данной реакции, если скорость подачи такая же, как и в опытах с трассером;
2) соотношение Vs/V для модели реактор вытеснения + «застойная зона» (рис. 4-7);
3) степень превращения вещества А для указанной выше модели, если плотность реакционной системы увеличивается на 10% при xa = 1 (скорость подачи оставить прежнюю).

Пример 4-12. Определить форму кривых и дать выражение функций распределении Е и I для модели, представленной на рис. 4-9.

Пример 4-13. Проводится необратимая реакция второго порядка А + В –(k)-> продукты. Начальные концентрации веществ равны CA0=CB0 = 0,021 кмоль/м3, константа скорости реакции k= 3,7-10-2 1/c (1/кмоль/м3). Продукты реакции в исходной смеси отсутствуют, Используется реальный реактор, для которого при одной и той же скорости подачи опыты с трассером дали следующие результаты:

Среднее время пребывания при проведении опытов с трассером т = 920 с.
Определить степень превращения, используя данные опытов с трассером, по формуле:
Является ли данный реактор «закрытой системой»? Будет ли действительная степень превращений отличаться от величины, рассчитанной по формуле?

Создание качественных сайтов любой степени сложности RODC: Сайт создать | Создание сайтов | Сделать сайт | Продвижение сайтов | Раскрутка сайта | Дизайн сайтов
Яндекс.Метрика Rambler's Top100