Автоматизация ТП

Автоматизация процесса получения серной кислоты

Технологическая схема производства. Колчедан в виде мелких гранул из бункера 1 (рис. 5.1) тарельчатым питателем 2 подается в печь с кипящим слоем 3. Для создания кипящего слоя под распределительную решетку печи подается воздух. В кипящем слое происходит горение серного колчедана - окисление серы кислородом воздуха - с образованием сернистого ангидрида (12-14%). Реакция окисления протекает с выделением большого количества тепла, поэтому в зону реакции введены змеевики, по которым перемещается хладоноситель. Обжиговый газ при температуре 800-900°С поступает в котел-утилизатор 4, где за счет испарения воды охлаждается примерно до 450 С. Затем он подвергается очистке от огарковой пыли в циклоне 5 и электрофильтре 6 и подается в промывное отделение.
В промывном отделении обжиговый газ подвергается тонкой очистке от примесей (селена, фтора, мышьяка), являющихся ядами для катализатора, и от оставшейся в газе огарковой пыли.
Первоначально обжиговый газ промывается и охлаждается (за счет испарения) серной кислотой концентрацией 40-50% в промывной колонне 7 распыливающего типа. Затем промывка осуществляется в насадочной колонне 9 кислотой меньшей концентрации (5-20%), отбираемой из емкости 10 и охлажденной в холодильнике 11. Обе абсорбционные колонны работают в замкнутом цикле по кислоте, поэтому концентрация кислоты постепенно повышается за счет испарения части воды и частичного улавливания сернистого ангидрида. Для поддержания постоянной концентрации кислоты в емкости 8 в нее подается менее концентрированная кислота из емкости 10, а в последнюю поступает вода. Пропорционально вновь вводимой воде из системы выводится кислота, которая после доведения ее концентрации до 93% отправляется потребителям как товарный продукт. Вместе с кислотой из промывной системы выводятся уловленные селен, фтор, мышьяк, огарковая пыль.
При охлаждении газа в колоннах 7 и 9 содержащийся в обжиговом газе серный ангидрид, соединения мышьяка и селена частично переходят в туманообразное состояние. Появившийся туман улавливается в мокром электрофильтре 12.
Пары воды, содержащиеся в газе, улавливаются в сушильной насадочной башне 13, орошаемой циркулирующей концентрированной серной кислотой (93-95%). Кислота отбирается из емкости 14, охлаждается в холодильнике 15 и распыливается в верхней части колонны. Из куба колонны кислота, разбавленная поглощенными парами воды, возвращается в емкость 14. Для поддержания постоянства концентрации часть разбавленной кислоты заменяется более концентрированной, отбираемой из емкости 25; материальный баланс при этом поддерживается путем пропорционального отбора кислоты с участка в виде конечного продукта. В верхней части сушильной колонны устанавливается брызгоуловитель 16 для сепарации капель жидкости, унесенных газовым потоком.
Из сушильной колонны газ, разбавленный до определенной концентрации сернистого ангидрида (7,5±0,2%) в отдувочной колонне 17, отбирается газодувкой 18 и подается на участок окисления сернистого ангидрида в серный. Окисление проводится на пяти слоях катализатора в контактном аппарате 21 при различных температурах слоев (430-440 °С-1-й слой; 460- 480°С -2-й слой; 450-460 -3-й; 430-435 - 4-й; 425-430-5-й слой).
Между слоями катализатора устанавливают теплообменники для отвода теп¬лоты реакции и охлаждения газа до оптимальной температуры. Для нагревания газа перед первым слоем применяют выносные теплообменники 19 и 20, теплоносителем в которых являются газы окисления после второго и последнего слоев катализатора. Концентрация сернистого ангидрида после контактного аппарата не должна превышать 0,15-0,17%, что соответствует максимальной степени контактирования 98±0,2%.
Газ после контактного аппарата подается на абсорбцию SO3, в процессе которой получают конечный продукт производства - серную кислоту. Первоначально абсорбция осуществляется в олеумном абсорбере 22, в котором абсорбентом служит олеум с содержанием свободного серного ангидрида, равным 19%. Затем газ подается в моногидратный абсорбер 23 (моногидрат-кислота концентрацией 98,3±0,5%). При поглощении серного ангидрида концентрация орошающей кислоты повышается; для поддержания постоянства концентраций циркулирующих абсорбентов в емкость олеума 24 подается кислота из емкости 15, а в последнюю поступают олеум, вода и разбавленная кислота из емкости 14. При поглощении серного ангидрида в абсорберах выделяется тепло. Для отвода теплоты реакции установлены хо¬лодильники 26 и 27.
Таким образом на контактных сернокислотных заводах получают «промывную» техническую кислоту (после очистки и укрепления концентрация ее доводится до 93% или 75%), «сушильную» кислоту концентрацией 93-95%, олеум с содержанием свободного серного ангидрида 19%.

Схема регулирования производства серной кислоты из колчедана контактным методом:

Рис. 5.1. Схема регулирования производства серной кислоты из колчедана контактным методом:
1 - бункер; 2 - тарельчатый питатель; 3 - печь кипящего слоя; 4 - котел-утилизатор; 5 - циклон; 6 - электрофильтр; 7, 9 - промывные колонны, 8, 10, 14, 24, 25 - емкости; 11, 15, 26, 27 - холодильники; 12 - мокрый электрофильтр; 13 - сушильная колонна; 16, 28 - каплеуловители; 17-отдувочная колонна; 18 - газодувка; 19, 20 - теплообменники; 21 - контактный аппарат; 22 - олеумиая абсорбционная колонна; 23 - моногидратная абсорбционная колонна.

Автоматизация процесса обжига колчедана. Показателем эффективности процесса является концентрация сернистого ангидрида в обжиговом газе. Она должна поддерживаться на постоянном значении, максимально возможном для данного сырья. Концентрация SO2 зависит от того, какое количество серы будет окислено и в каком количестве воздуха. Последний параметр определяется расходом воздуха и может быть легко стабилизирован. Сложнее стабилизировать количество окисленной серы. С одной стороны, оно зависит от входных параметров процесса: расхода я состава колчедана, его влажности, размеров гранул, причем только расход колчедана может быть стабилизирован, а с изменением остальных параметров в объекте будут появляться возмущающие воздействия. С другой стороны, количество окисленной серы зависит от режимных па¬раметров процесса, определяющих процесс горения.
К режимным параметрам, которые в первую очередь определяют процесс горения, относятся температура горения (при понижении температуры ниже предельного значения процесс окисления вообще прекратится, а при повышении произойдет спекание частичек колчедана в комья) и перепад давления в верхней и нижней частях аппарата (так как он определяет высоту кипящего слоя). Температура в аппарате стабилизируется на оптимальном значении изменением расхода хладоносителя, а перепад давления - поддержанием постоянных значений давления в верхней части аппарата и под распределительной решеткой. Давление в верхней части аппарата стабилизируется изменением расхода обжигового газа, а давление под распределительной решеткой - изменением расхода огарка, выводимого из печи. Для этой цели служит секторный затвор на магистрали выгрузки огарка, который состоит из двух последовательных затворов, что способствует повышению надежности: при перекрытии потока огарка один из затворов может быть заклинен, тогда функции регулирующего органа выполняет второй.
Таким образом, часть возмущающих воздействий может быть ликвидирована путем установки стабилизирующих регуляторов расхода воздуха, давления под и над распределительной решеткой, температуры в аппарате. С изменением же состава колчедана (содержание серы в колчедане обычно колеблется от 35 до 50%), размера гранул (диаметр частиц колеблется от 1 до 6 мм) в процесс поступают сильные возмущения. В связи с этим в качестве основной регулируемой величины выбирают концентрацию сернистого ангидрида в обжиговом газе, а регулирование осуществляют изменением расхода колчедана, воздействуя на электропривод тарельчатого питателя.
Для обеспечения 'нормального технологического режима котла-утилизатора стабилизируют уровень жидкости и давление пара в котле (первый - изменением расхода воды, второй - изменением расхода пара).

 

Автоматизация процесса получения пропилена

Технологическая схема производства. Пропилен поступает в нижнюю часть реактора полимеризатора 1 (рис. 5.10). Туда же подают инертный растворитель (обычно бензин) и катализатор. Необходимая степень перемешивания, реакционной массы обеспечивается механической мешалкой и барботажем. мономера через жидкую фазу.
В результате реакции полимеризации получают полипропилен. Основным показателем качества продукта полипропилена является средняя молекулярная масса, определяющая механические и физические свойства получаемого продукта. Молекулярная масса полимера определяется расходом специальной добавки - регулятора молекулярной массы, в качестве которого, как правило, используют водород.
Для отвода теплоты реакции в рубашку реактора подают хладоноситель. Полученная суспензия полимера вместе с непрореагировавшим мономером через подогреватель 2 поступает в испарительную камеру 3. В последней происходит выделение из жидкости растворенного мономера и испарение части растворителя. Суспензия полимера отводится из нижней части испарительной камеры и подается на выделение растворителя, а парогазовая смесь охлаждается в холодильнике 4 и поступает в сепаратор 5. Конденсат растворителя из сепаратора возвращается в испарительную камеру 3, а газовая фаза, состоящая в основном из мономера, направляется на очистку. В даль¬нейшем мономер вновь возвращается в реактор 1.
Автоматизация процесса полимеризации. Показателем эффективности процесса является степень превращения мономера в полимер. Ее следует поддерживать на постоянном - максимально возможном для данного мономера и данных условий - значении. Степень превращения зависит от характеристики катализатора, температуры и давления в реакторе, состава растворителя и 'мономера, расхода растворителя, мономера и регулятора молекулярной массы.
Определяющим фактором являются химический состав и соотношение компонентов катализатора, концентрация его в реакторе, расход и способ приготовления. При управлении процессом полимеризации целенаправленно изменяют или стабилизируют только расход катализатора. С 'изменением остальных параметров в объект поступают возмущения.
Важным параметром является температура в зоне реакции. При повышении температуры на 1 °С скорость полимеризации пропилена возрастает на 6%. Верхний предел температуры устанавливают, исходя из работоспособности катализатора. При чрезмерном повышении температуры скорость процесса полимеризации может возрасти до критического значения, и произойдет авария. Поэтому температуру следует поддерживать на строго определенном значении, близком к критическому; регулирующее воздействие достигается при этом изменением расхода хладоносителя, подаваемого в рубашку реактора.
С изменением состава мономера, растворителя и регулятора молекулярной массы в объекте будут возникать возмущения, которые могут значительно изменить ход процесса. Например, катализатор очень чувствителен к малейшим примесям серы и пропадиена, а присутствие некоторых веществ вообще прекращает реакцию.
Давление в реакторе влияет на растворимость мономера и водорода в жидкой фазе, т. е. на их концентрацию в реакционной массе. Кроме того, в реакторах с газовой фазой давление определяет температуру кипения растворителя. Поэтому давление следует стабилизировать изменением расхода продукта реакции - суспензии полимера.
Расход мономера, катализатора, растворителя и регулятора молекулярной массы влияет на степень превращения мономера в полимер «е в меньшей степени, чем остальные параметры. Их можно стабилизировать и тем самым устранить сильные возмущения по этим каналам, а можно изменять с целью внесения регулирующих воздействий.
Обычно стабилизируют расход растворителя, регулятора молекулярной массы и катализатора. Расход же мономера изменяют таким образом, чтобы поддерживать количество непрореагировавшего мономера постоянным, минимально возможным для данных условий. Для определения количества непрореагировавшего мономера после сепаратора устанавливают датчик: расхода. Данный узел регулирования реализуется с помощью двухконтурной системы, в которой основным регулятором является регулятор расхода непрореагировавшего мономера, а вспомогательным - регулятор расхода мономера, подаваемого в реактор.
В схеме предусмотрено также регулирование температуры суспензии после подогревателя 2 изменением расхода пара, подаваемого в подогреватель. Это необходимо для полного выделения мономера из жидкой фазы. Для поддержания материального баланса регулируют уровень суспензии и давление в испарительной камере 3.

Схема регулирования процесса полимеризации пропилена в произ¬водстве полипропилена:

Рис. 5.10. Схема регулирования процесса полимеризации пропилена в произ¬водстве полипропилена:
1 - реактор-полимеризатор; 2 - подогреватель; 3 - испарительная камера; 4 - холодильник; 5 -сепаратор.

   

Автоматизация процесса аммиачной селитры

Технологическая схема производства. Аммиачная селитра - одно из наиболее распространенных азотных удобрений. Получают ее нейтрализацией разбавленной азотной кислоты (40-50%) газообразным аммиаком.
Азотная кислота из приемной емкости 1 (рис. 5.5) проходит через теплообменник 2 и поступает в нейтрализатор 3. Туда же подается предварительно нагретый в теплообменнике 5 газообразный аммиак. Основное количество аммиака поступает в газообразном состоянии из цеха синтеза аммиака. Дополнительно со склада подается жидкий аммиак, который испаряется в аппарате 4.
В нейтрализаторе 3 при атмосферном давлении и определенной температуре протекает процесс нейтрализации, параллельно с ним происходит частичное упаривание раствора за счет теплоты нейтрализации. Частично упаренный слабокислый раствор аммиачной селитры концентрацией 60-80% (так называемый слабый щелок) поступает в бак с мешалкой - донейтрализатор 6, где окончательно нейтрализуется аммиаком. Пар, образующийся при выпаривании раствора (соковый пар), выводится из верхней части нейтрализатора. При неправильном ведении процесса из нейтрализатора с соковым паром может уноситься часть аммиака и азотной кислоты.
Упаривание слабого щелока до 98,5% NН4NО3 осуществляется под вакуумом в две ступени. Первоначально в выпарном аппарате 8 концентрация щелока доводится до 82% NH4NO3, а затем и в выпарном аппарате 12 - до заданной.
Слабый щелок подается в нижнюю часть выпарного аппарата 8. В качестве греющего агента в выпарном аппарате I ступени в основном используют соковый пар. Дополнительно к нему подают водяной пар. По мере увеличения концентрации сокового пара в греющей камере выпарного аппарата накапливаются инертные газы, ухудшающие теплопередачу. Для обеспечения нормальной работы аппарата 8 предусмотрена продувка межтрубного пространства с выбросом инертных газов в атмосферу.
Упаренный щелок из аппарата 8 перемещается в сборник 10. Здесь для улучшения качества получаемой селитры к щелоку добавляют раствор доломита, снижающего слеживаемость селитры.
Из сборника 10 щелок перекачивается в выпарной аппарат 12. В сепараторе 13 производится разделение выпаренного раствора на соковый пар и концентрированный раствор - плав. Соковый пар проходит в барометрический конденсатор 14, а плав подается в грануляционную башню 15. Гранулированная аммиачная селитра (конечный продукт) выводится из башни по выходному патрубку 16 транспортером 17.
Автоматизация процесса нейтрализации. Показателем эффективности этого процесса является количество удельных потерь сырья с соковым паром. Их необходимо поддерживать минимальными, что способствует снижению себестоимости продукции. Потери сырья в основном зависят от соотношения расходов аммиака и азотной кислоты. Установлено, что потери сырья будут минимальны, если обеспечить поддержание соотношения расходов с точностью до 0,1-0,15%, или от 1 д» 1,5 г/л избыточной кислотности. Такая точность регулирования обеспечивается узлами регулирования соотношения расходов азотной кислоты и аммиака, расхода аммиака и величины рН в (нейтрализаторе.
Регуляторы должны обеспечивать кроме минимальных потерь сырья еще и постоянство концентрации слабого щелока. Эта концентрация зависит от температурного режима в нейтрализаторе, который определяется количеством тепла, выделяющегося в процессе реакции, а также температурами аммиака и азотной кислоты, поступающих в нейтрализатор. Количество тепла, выделяющегося в процессе реакции, зависит от соотношения расхода аммиака и азотной кислоты. Это соотношение поддерживается постоянным, поэтому можно считать постоянным количество выделившегося тепла. Для стабилизации температур аммиака и азотной кислоты устанавливают регуляторы температуры.
Манометрический режим в магистралях газообразного аммиака поддерживается регуляторами давления. Давление аммиака, поступающего из цеха синтеза, стабилизируется путем изменения расхода аммиака, подаваемого из испарителя 4, а давление аммиака, испаряющегося в аппарате 4, - путем изменения расхода пара, поступающего в этот аппарат. Для поддержания материальных балансов устанавливают регуляторы уровня в приемной емкости 1 и испарителе 4.
Донейтрализация раствора в аппарате 6 проводится с помощью регулятора нейтрализации в зависимости от рН раствора. Регулирующее воздействие вносится изменением расхода аммиака. Для поддержания материального баланса стабилизируется уровень раствора аммиачной селитры в аппарате 6.
Концентрация раствора, упаренного в аппарате 8, поддерживается постоянной с помощью узлов регулирования давления пара, подаваемого в аппарат 8, и температуры конденсата сокового пара. Концентрация раствора после выпарного аппарата 12 стабилизируется с помощью регуляторов температуры раствора (путем изменения расхода раствора в этот аппарат) и температуры конденсата сокового пара.
Удаление инертных газов из аппарата 5 осуществляется командоаппаратом, который периодически подает импульсы на открытие клапанов, установленных на магистралях продувки.
Для правильного ведения процесса смешения в сборнике 10 устанавливают регулятор соотношения расходов доломита и щелока.
Выгрузка аммиачной селитры из грануляционной башни осуществляется автоматически в зависимости от уровня селитры регулирующей заслонкой в выходном патрубке 16.

Схема регулирования производства аммиачной селитры:

Рис. 5.5. Схема регулирования производства аммиачной селитры:

1 - емкость; 2, 5 - теплообменники; 3 - нейтрализатор; 4 - испаритель; 6 - донейтрализатор; 7, 11 -насосы; 8 - выпарной аппарат I ступени; 9, 14 - барометрические конденсаторы; 10 - сборник; 12 - выпарной аппарат II ступени; 13 - сепаратор; 15 - грануляционная башня; 16 - выходной патрубок; 17. - транспортер.

   

Автоматизация процееса получения полиэтилена высокого давления

Технологическая схема производства. Этилен, сжатый до рабочего дав¬ления, поступает в емкость 1 (рис. 5.9), из которой двумя потоками подается в трехзонный реактор автоклавного типа с перемешивающим устройством. Верхний поток, предварительно нагретый в теплообменнике 2, подается в верхнюю зону 3 реактора, а нижний вводится между средней 4 и нижней 5 зонами. Полимеризация проводится под давлением ПО-150 МПа при температуре 170-200 С. Для ускорения процесса в верхний трубопровод этилена дозируется инициатор. В результате реакции часть этилена полимеризуется в полиэтилен. Степень полимеризации колеблется в пределах 10-12%. Смесь непрореагировавшего этилена и полиэтилена поступает в отделитель 6. При дросселировании смеси давление падает до 30 МПа. Полиэтилен скапливается в нижней части отделителя и периодически выгружается в приемник 8, а этилен непрерывно направляется в циклон 7 для очистки. Полиэтилен из приемника поступает на переработку, а этилен после очистки вновь возвращается в процесс.
Автоматизация процесса полимеризации. Показателем эффективности процесса полимеризации является степень полимеризации; ее необходимо поддерживать максимально возможной. Степень полимеризации определяется чистотой этилена, температурой и давлением полимеризации, соотношением расходов этилена и инициатора. К чистоте этилена предъявляются очень высокие требования, так как появление примесей существенно изменяет ход процесса.
Процесс полимеризации протекает при больших скоростях, температуре и давлении, что обусловливает жесткие требования к поддержанию температуры и давления в устойчивой для процесса области. При выходе этих параметров за допустимые пределы начинается реакция разложения с последующим взрывом.
Температурный режим в реакторе стабилизируется двумя двухконтурными системами. Основным регулятором одной является регулятор температуры верхней зоны реактора, вспомогательным - регулятор температуры потока-этилена после теплообменника 2. Основным регулятором другой системы является регулятор температуры нижней зоны реактора, вспомогательным - регулятор температуры средней зоны. При регулирова¬нии температуры в нижней зоне происходит перераспределение потоков этилена, что отражается на температуре в верхней зоне. Для устранения этого предусмотрена корректировка тем¬пературы средней зоны.
Давление в реакторе стабилизируется изменением расхода смеси этилена и расплавленного полиэтилена, выводимой из нижней зоны реактора. Улучшение качества регулирования давления в реакторе достигается стабилизацией давления в отделителе.
Соотношение расходов этилена и инициатора поддерживается оператором путем изменения расхода инициатора; при этом стремятся получить наилучшую степень полимеризации. Оператор, кроме того, вручную управляет выгрузкой полимера из отделителя. Необходимость вмешательства человека при управлении процессом полимеризации объясняется отсутствием надежных датчиков и возможностью разложения этилена и полиэтилена.
Реакция разложения протекает с большой скоростью и сопровождается резким повышением давления и температуры, что может привести к взрыву. При разложении выделяется углерод, удаление которого из реактора требует больших затрат труда и времени. Защиту реактора от резкого повышения давления и температуры во время пуска и эксплуатации осуществляют специальные устройства, воздействующие на клапаны 9 и 10.
В настоящее время для управления реакторами полимеризации этилена используется специально разработанное управляющее устройство «Автооператор». Оно выполняет все операции по регулированию параметров процесса, пуску и остановке реактора, защите реактора при разложении, контролю и сигна¬лизации параметров процесса.

Схема регулирования процесса полимеризации этилена под давлением:


Рис. 5.9. Схема регулирования процесса полимеризации этилена под давлением:
1 - приемная емкость; 2 - теплообменник; 3, 4, 5 - верхняя, средняя и нижняя зоны -реактора; 6 - отделитель; 7 - циклон; 8 - приемник; 9 - клапан, обеспечивающий постепенное увеличение давления при пуске реактора; 10 - аварийный клапан сброса.

   

Автоматизация бутадиена 1,3 из н-бутана

Технологическая схема производства бутадиена-1,3 из n-бутана состоит из нескольких участков.
Участок дегидрирования n-бутана в н-бутен (рис. 5.7). Жидкий n-бутан со склада подают в сепаратор 1 и испаритель 2. Полученные в испарителе насыщенные пары n-бутана перегреваются в трубчатой печи 3 и направляются в аппарат, совмещающий в одном корпусе реактор 4 и регенератор 5. В реакторе 4 под действием высоких температур (<700 °С) и в присутствии катализатора происходит процесс дегидрирования n-бутана в н-бутен. Параллельно идут и другие химические реакции, в результате которых получаются метан, водород, углерод, диоксид углерода и т. п. Максимальный выход м-бутена на сырье составляет 70%. Часть н-бутана (до 65%) вообще не вступает в реакцию. Образующийся при контактировании газ выводится из верхней части реактора 4, охлаждается в холодильниках и котлах-утилизаторах (на схеме не показаны) и направляется на участок выделения бутан-бутеновой фракции.
В процессе дегидрирования поры катализатора, представляющего собой мелкие гранулы, забиваются углеродом (побочным продуктом реакции), и активность катализатора падает. Отработанный катализатор током воздуха поднимается из реактора 4 по пневмотранспортной системе в регенератор 5, где при высоких температурах углерод выжигается из пор катализатора. Активность катализатора при этом восстанавливается. Под действием собственного веса гранулы катализатора опускаются в нижнюю часть реге¬нератора и далее в реактор. Газы регенерации - продукты сжигания топлива и углерода - выбрасываются из верхней части регенератора в атмосферу.
Участок выделения бутан-бутеновой фракции. Из буфера 6 контактный газ забирается компрессором и подается последовательно в конденсаторы 7 и 8. Конденсация в аппарате 7 осуществляется за счет холодной воды, а конденсация и охлаждение в аппарате 8 - в результате испарения жидкого аммиака, поступающего из сепаратора 9. Конденсат, образующийся в конденсаторах 7 и 8, собирается в емкости 10. Несконденсировавшийся газ после сепаратора 11 направляется в абсорбционную колонну 12.
Несорбированная часть газа (метан, водород) выбрасывается в топливную сеть. Насыщенный углеводородами абсорбент из нижней части колонны 12 направляется в десорбционную колонну 16. Отогнанный абсорбент из куба колонны 16 через емкость 14 и холодильник 15 возвращается в абсорбционную колонну. Углеводороды из сборника 19 поступают в ректификационные колонны (на схеме не показаны), где осуществляется выделение бутан-бутеновой фракции.
Участок разделения. Насыщенные пары фракции С4 после сепаратора 22 и испарителя 23 поступают в колонну экстрактивной дистилляции 25. Растворйтель (ацетонитрил) подается в верхнюю часть колонны 25. В среднюю часть колонны 21 для укрепления смеси н-бутенов и растворителя вводят рециркулирующий м-бутен. Кроме того, для подавления гидролиза водного раствора ацетонитрила в куб колонны 21 подается аммиак.
Конечными продуктами процесса экстрактивной дистилляции являются бутан из сборника 27 и раствор н-бутенов в водном ацетонитриле из куба колонны 21. Этот раствор поступает в десорбционную колонну 28 для отгонки н-бутенов. Кубовый остаток из колонны 28 возвращается в колонну 25, а конденсат н-бутенов из сборника 30 направляется в нижнюю часть экстракционной колонны 32 для отмывки фузельной водой оставшихся примесей ацетонитрила. Чистые н-бутены из сборника 33 поступают на склад.
Участок дегидрирования н-бутенов. Процесс дегидрирования н-бутенов происходит в реакторе 36 в присутствии водяного пара на неподвижном катализаторе. По истечении определенного времени активность катализатора падает, и реактор переключается с контактирования на регенерацию, т. е. процесс дегидрирования н-бутенов периодичен.
Контактирование ведется при закрытых задвижках IV, V, VI и открытых задвижках I, II, III, VII. Насыщенные пары н-бутенов из испарителя 34 поступают в печь 35. Выходящие из печи перегретые пары м-бутенов смешиваются с водяным паром. На смешение подается как насыщенный водяной пар, так и перегретый в печи 35. Образующаяся смесь проходит сверху вниз через реактор 36, заполненный катализатором. Контактный газ подвергается закалке впрыскиванием воды, а затем через котел-утилизатор 37 поступает на участок выделения бутен-бутадиеновой фракции.
Регенерирование ведется при закрытых задвижках I, II, III, VII и периодически открывающихся задвижках IV, V, VI. Первоначально реактор при открытой задвижке IV продувается паром, затем открывается задвижка V, закрывается задвижка IV, и в реактор подается воздух для выжигания кокса с гранул катализатора. По окончании этого процесса система вновь продувается паром. Газы регенерации выбрасываются в атмосферу при открытой задвижке VI. Затем цикл повторяется.
Участок выделения бутен-бутадиеновой фракции. Схема этого участка аналогична схеме участка выделения бутан-бутеновой фракции. Она включает абсорбционную, десорбционную и три ректификационные колонны (на рисунке этот участок не показан).
Участок разделения бутен-бутадиеновой фракции. Бутилен-бутадиеновая фракция подается в среднюю часть колонны хемосорбции 38. Ниже в колонну поступают бутен-бутадиеновая фракция, возвращаемая с полимеризации, и рециркулирующий бутадиен. Поглотительный медноаммиачный раствор, предварительно охлажденный в холодильнике 42, подается в верхнюю часть колонны. Из колонны 38 отводят очищенные от бутадиена н-бутены. Они собираются в сборнике 39, откуда насосом откачиваются на склад.
Насыщенный бутадиеном раствор из нижней части колонны 38 поступа-рт на предварительную десорбцию в теплообменник 40. Парожидкостная смесь из теплообменника 40 поступает в сепаратор 41. Бутадиен в виде паров возвращается в колонну 38. Обедненный бутадиеном раствор направляется в десорбциоиную колонну 44 для окончательного разделения. Поглотитель в виде кубового остатка собирается в сборнике 43, а затем возвращается в колонну 38. Бутадиен в виде конденсата из дефлегматора 45 собирается в сборнике 46, откуда в качестве конечного продукта производства отправляется на склад.
Автоматизация процесса дегидрирования н-бутана. Основной задачей при автоматизации дегидрирования н-бутана является поддержание максимального выхода «-бутенов (на исходное и разложенное сырье). Выход бутадиена зависит от состава и расхода исходного сырья, температуры в зоне реакции, времени контактирования, активности катализатора.
Стабилизировать состав исходного сырья на данном участке невозможно: он зависит от режима процессов нефтепереработки. Возможно поступление возмущений и по другим каналам.
Для того чтобы при наличии возмущений выход н-бутенов был максимальным, изменяют температуру контактирования и расход сырья. Это осуществляется многоконтурной системой регулирования, в которой основным регулятором является экстремальный регулятор качества (существует экстремальная зависимость между содержанием н-бутенов в контактном газе, с одной стороны, и температурой и расходом сырья - с другой), а вспомогательными - регуляторы расхода сырья в реакторе 4 и температуры в зоне реакции.
Продолжительность контактирования зависит от скорости прохождения паров «-бутана через реактор и от уровня катализатора в нем. Скорость паров определяется разностью давлений в начале и конце газового тракта. С целью поддержания этой разности на определенном значении давления газа контактирования после реактора 4 и паров «-бутана после сепаратора стабилизируют. Постоянный уровень катализатора обеспечива¬ется изменением расхода воздуха в линию катализатора.
Активность катализатора, поступающего в реактор, определяется количеством углерода, осевшего в его порах. Для полного сжигания осевшего углерода предусмотрена стабилизация температуры в зоне реакций регенератора 5 и состава газов регенерации (с помощью газоанализатора горючих компонентов). Постоянный состав газов регенерации поддерживается с помощью двухконтурной системы регулирования. Основным регулятором в ней является регулятор состава газов регенерации, вспомогательным - регулятор расхода воздуха.
Для поддержания материального баланса установлен регулятор уровня в сепараторе 1,
Автоматизация процесса дегидрирования н-бутенов. На данном участке автоматизируются процессы контактирования и регенерации, а также переключения реактора с одного вида ра¬боты на другой.
Командный прибор через определенные промежутки времени с помощью соответствующих задвижек автоматически переключает технологические линии, осуществляя смену операций в цикле контактирование - регенерация.
Основной задачей при автоматизации процесса контактирования является обеспечение максимального выхода бутадиена (17% на пропущенные н-бутены, 80% на разложенные).-
Найдена экстремальная зависимость между содержанием бутадиена в контактном газе и температурой реакции, а также подачей н-бутенов в реактор. Это дает возможность установить экстремальный регулятор выхода бутадиена, который корректирует работу регуляторов температуры контактирования и расхода «-бутенов. .Поскольку непосредственно в реактор тепло не подводится, регулируют температуру смеси перегретого водяного пара и перегретого пара н-бутенов, идущей на дегидрирование. Регулирование осуществляется разбавлением смеси насыщенным водяным паром.
Перед смешением температура перегретых паров стабилизируется двухконтурной системой, в которой основным параметром является температура перегретых ларов, а вспомогательным- температура перевальной стенки печи 35.
Для сохранения однозначной зависимости между выходом бутадиена и температурой реакции в схеме предусмотрено поддержание постоянного времени контактирования. Это осуществляется стабилизацией давления насыщенных паров н-бутенов.
Нормальная закалка контактного газа обеспечивается регулированием температуры его после реактора 36. Поддержание материального баланса в котле-утилизаторе 37 осуществляется стабилизацией уровня.
Оптимальное проведение процесса регенерации обеспечивается узлами стабилизации расхода насыщенного водяного пара, поступающего в печь 35, и температуры в печи.

Схема регулирования производства бутадиена-1,3 из н-бутана

Рис. 5.7. Схема регулирования производства бутадиена-1,3 из н-бутана:

1, 9, 11, 13, 22, 41 - сепараторы; 2, 20, 23, 34 - испарители; 3, 35 -печи; 4, 36 - реакторы; 5 - регенератор; 6 - буфер; 7,8 - конденсаторы: 10, 14 - емкости; 12 - абсорбционная колонна; 15, 42 - холодильники; 16, 28, 44 - десорбциониые колонны; 17, 26, 29, 45 - дефлегматоры; 8, 24, 31, 47 - кипятильники; 19, 27, 30, 33, 39, 43, 46 - сборники; 21, 25 - колонна экстрактивной дистилляции; 32 - экстракционная колонна: 37 - котел-утилизатор; 38 - колонна хемосорбции; 40 - теплообменник.

   

Cтраница 5 из 13

Яндекс.Метрика Rambler's Top100 www.megastock.com Здесь находится аттестат нашего WM идентификатора 000000000000
Проверить аттестат