Автоматизация ТП

Типовое решение автоматизации процесса адсорбции

Типовое решение автоматизации процесса адсорбции

Типовое решение автоматизации (рис. 4.45).

Типовая схема автоматизации процесса адсорбции:

Рис. 4.45. Типовая схема автоматизации процесса адсорбции:
1 - адсорбционная колонна; 2 - тарелки; 3 - дозатор.

В качестве объекта управления возьмем противоточный «епрерывнодействующий аппарат 1 с кипящим слоем мелкозернистого адсорбента на та¬релках 2. На верхнюю тарелку такого аппарата подается адсорбент с помощью дозатора 3. Под действием силы тяжести адсорбент 'проваливается с тарелки на тарелку и выводится из нижней части адсорбера; газ же движется снизу ;вверх и выводится из верхней части аппарата. Показатель эффективности, цель управления и закономерности такого процесса адсорбции аналогичны процессу абсорбции, поэтому типовые решения автоматизации этих процессов одни и те же. Основным .контуром регулирования является регулятор концентрации адсорбируемого компонента в отходящем газе, а регулирующее воздействие осуществляется изменением расхода адсорбента (корректировкой работы дозатора 3). Для устранения возмущения по каналу расхода газовой смеси этот расход стабилизируется. Контролю подлежат расход газовой смеси, конечная концентрация адсорбируемого компонента, температуры газовой смеси и адсорбента, температуры по высоте адсорбера, давление в верхней и нижней частях колонны, перепад давления между ними. Сигнализации подлежат концентрация адсорбируемого компонента в отходящем газе и давление в колонне; при резком возрастании последнего должно сработать устройство защиты.
Регулирование гидравлического сопротивления колонны. Одним из важных параметров процесса адсорбции в кипящем слое является перепад давлений в верхней и нижней частях колонны. При постоянном расходе газовой смеси этот параметр определяется массой адсорбента на тарелках, поэтому регулирующее воздействие при стабилизации перепада давления осуществляется корректировкой работы дозирующего устройства. При использовании такой схемы обычно отпадает необходимость в регулировании конечной концентрации адсорбируемого компонента. Можно использовать двухконтурную систему, основным параметром которой будет конечная концентрация, а вспомогательным - перепад давлений.
Перепад давления по всей колонне в конечном счете определяется количеством адсорбента, поступающего на верхнюю тарелку, т. е. перепадом давления на ней. Б связи с этим можно идти по пути стабилизации этого параметра, так как он значительно менее инерционен, чем перепад по всей колонне.

Регулирование аппаратов с провальными тарелками переменного сечения.

Если конструкция тарелок позволяет изменять их проходное сечение, появляется еще один канал регулирующего воздействия. Обычно поперечное сечение тарелок поддерживают на таком значении, чтобы перепад давления на отдельных тарелках был постоянным.
Работа тарелок такой конструкции может быть настроена и на дискретный режим, когда порция адсорбента единовременно подается на верхнюю тарелку и остается там в течение заданного времени; затем проходное сечение тарелки открывается, адсорбент проваливается на нижележащую тарелку и т. д. Для управления такими тарелками устанавливается программное устройство, которое в соответствии с жесткой временной программой открывает и закрывает проходные сечения тарелок. Это же устройство при сбрасывании адсорбента с верхней тарелки выдает сигнал дозатору на начало загрузки ее свежим адсорбентом. Загрузка продолжается до того момента, когда перепад давления на верхней тарелке становится равным заданному.

Регулирование десорберов с кипящим слоем.

Выделение из адсорбента поглощенного вещества проводится в кипящем слое противоточных тарельчатых сорбционных аппаратов. 

Схема регулирования процесса десорбции в кипящем слое:

Рис. 4.46. Схема регулирования процесса десорбции в кипящем слое:
1 - калорифер; 2 - десорбцнонпая колонна; 3 - тарелки: 4 - дозатор.

Адсорбент после адсорбера (рис. 4.46) подается на верхнюю тарелку, а в нижнюю часть после калорифера поступает нагретый воздух. Как и для процесса адсорбции, система регулирования десорбера включает узлы регулирования перепада давления в колонне и расхода воздуха. Кроме того, для лучшего выделения поглощенного вещества стабилизируют температуру воздуха после калорифера изменением расхода теплоносителя.

Регулирование адсорберов с неподвижным слоем адсорбента

(рис. 4.47). Адсорберы этого типа относятся к периодически действующим аппаратам. Для управления ими устанавливается программное устройство, которое ио жесткой временной программе осуществляет следующие операции: открывает кла¬паны 1 и 2 « закрывает клапаны 3-8 (операция адсорбции); открывает клапаны 3 и 6 и закрывает клапаны 1, 2, 4, 5, 7, 8 (операция десорбции); открывает клапаны 4 к 7 к закрывает клапаны 1-3, 5, 6, 8 (операция сушки адсорбента), открывает клапаны 5 и 7 и закрывает клапаны 1-4, 6, 8 (операция охлаждения адсорбента); открывает клапан 8 и закрывает клапаны 1-7 (операция слива конденсата).

 Схема регулирования адсорбера с неподвижным слоем адсорбента.

Рис. 4.47. Схема регулирования адсорбера с неподвижным слоем адсорбента.

 

Типовое решение автоматизации перемещение жидкостей и газов часть 2

Регулирование изменением числа ходов и длины хода поршня.

При использовании прямодействующих паровых поршневых насосов (компрессоров) регулирование расхода осуществляется дросселированием пара в линии пуска его в паровой цилиндр, что вызывает изменение числа ходов поршня.
В настоящее время находят применение поршневые насосы, в которых расход регулируют изменением хода поршня (рис. 4.2). Возвратно-поступательное движение тяги 5 и соответ¬ственно штока 7 в насосах такого типа зависит от положения второго конца серьги 6. Если положение серьги таково, что про¬екция ее на горизонтальную ось насоса 5 равна длине тяги, то возвратно-поступательное движение тяги прекращается; ход поршня в этом случае равен нулю. Если же положение серьги соответствует изображенному на рисунке, ход поршня будет мак¬симальным. Каждому промежуточному положению серьги соот¬ветствует определенный ход опоршня. Положение серьги зависит от положения рамки 9, которая :может поворачиваться вокруг своей оси и на которую можно воздействовать с помощью чер¬вячной передачи.
При ручном регулировании червяк Приводится во вращение от маховика, при автоматическом - необходима установка спе¬циального сервомотора. Для химических производств разработа¬ны специальные пневматические конструкции приводного устРис. 4.2. Схема насоса с регулируемым ходом поршня:

Схема насоса с регулируемым ходом поршня:

Рис. 4.2. Схема насоса с регулируемым ходом поршня:

1 - электродвигатель; 2 - червяк; 3 - червячное колесо; 4 - шатуи; 5 - тяга; 6 - серьга; 7 - шток; 8 - поршневой насос; 9 - поворотная рамка устройства поворотной рамки. Основным узлом ,их является пор¬шень, положение которого в цилиндре зависит от давления ко¬мандного пневматического сигнала; шток поршня воздействует на поворотную рамку 9.

Регулирование изменением угла наклона рабочих лопастей или лопаток.

Производительность центробежных машин можно регулировать изменением угла наклона - рабочих лопастей. Этот метод эффективен, однако поскольку для его реализации требу¬ется использование специальных насосов, и компрессоров с устройствами поворота лопастей, он не нашел широкого распространения. Это же можно сказать и о регулировании изменением угла наклона поворотных лопаток, устанавливаемых специаль¬но для этой цели перед входом в рабочее колесо центробежных компрессоров.
Регулирование работы насосной станции. Если жидкость перемещается насосной станцией, то появляется возможность воздействовать на расход изменением числа работающих насосов или же переключением насосов с параллельного соединения на последовательное, и наоборот (при последовательном соединении складываются напоры, при параллельном - подачи).
Специальные методы регулирования поршневых компрессоров. Для создания больших давлений в химической промышленности широко используют поршневые компрессоры. При их автоматизации регулируемой величиной служит давление в нагне¬тательной линии, а регулирующее воздействие вносится путем изменения производительности компрессора. Изменять производительность можно разными способами; некоторые из них были рассмотрены выше. Для поршневых компрессоров, кроме того, разработан ряд специальных способов регулирования. Применение их основано на том, что на стороне нагнетания у поршневых компрессоров устанавливают ресиверы большой емкости для сглаживания 'пульсаций потоков газа. Это позволяет вносить регулирующие воздействия периодическим отключением компрессора от потребителя (при отключении потребитель получает газ из ресивера). При этом качество регулирования давления обеспечивается варьированием частоты отключения.
Отключение компрессора от потребителя можно производить различными способами: переводом компрессора на холостой хода периодическим пуском и остановкой электродвигателя компрессора; расцеплением компрессора и электродвигателя; перекрытием всасывающей линии; соединением полости цилиндра со всасывающим трубопроводом на всем ходе сжатия; механическим удержанием пластин клапанов компрессора в открытом со¬стоянии на всем ходе сжатия; периодическим подключением дополнительного мертвого пространства к объему цилиндра компрессора. Разберем способы, получившие распространение в промышленности.
Простым и доступным способом внесения регулирующего воздействия является перевод компрессора на холостой ход, при котором в случае превышения давления над заданным газ сбра¬сывается из нагнетательной линии во всасывающую по байпас-ному трубопроводу. Для этой цели на байпасном трубопроводе устанавливают запорный орган с исполнительным механизмом, получающим сигнал от позиционного регулятора. В случав многоступенчатых компрессоров газ сбрасывается во всасывающую линию как после первой, так и после остальных ступеней (рис. 4.3). Этот метод "значительно экономичнее, чем дросселирование газа в байпасном трубопроводе, так как перепускаемый со стороны нагнетания на сторону всасывания газ сжимается лишь настолько, чтобы преодолеть сопротивление, создаваемое клапанами и трубопроводами компрессорной установки.

Схема регулирования работы двухступенчатого поршневого компрессора переводом его на холостой ход:

Рис. 4.3. Схема регулирования работы двухступенчатого поршневого компрессора переводом его на холостой ход:
1 - первая ступень компрессора; 2 - холодильник; 3 - вторая ступень компрессора: 4 - обратный клапан; 5 - ресивер.
Другим способом внесения регулирующего воздействия является периодический пуск и останов электродвигателя компрес¬сора. Для этого необходимо перевести электродвигатель на авто¬матический режим, при котором состояние магнитного пускателя определяется двухпозиционным регулятором давления. Правда, резкие толчки тока при пуске влияют на работу других потреби¬телей, а также приводят к нагреванию обмоток электродвига¬теля. В связи с этим мощность электродвигателей не должна превышать определенных значений (для асинхронных короткозамкнутых - 100 кВт, для асинхронных с фазным ротором -Для уменьшения пускового тока в случае короткозамкнутого электродвигателя целесо¬образно переключить обмотки со звезды на треугольник. Допустимое число включений в этом - случае возрастает до 30 за один час. Еще больший эффект дает пуск электродвигателя при холостом ходе компрессора. Полностью избежать резких толчков пускового тока можно установкой регулируемых муфт скольжения. В этом случае потребляемая электродвигателем мощность составляет только 15% рабочей.

Специальные методы регулирования центробежных компрессоров.

Необходимость специальных методов (регулирования цент¬робежных компрессоров объясняется тем, что при сильном уменьшении потребления газа давление в линии нагнетания воз¬растет до такого значения, при котором изменится направление газового потока в компрессоре. Это будет происходить до тех нор, пока давление на выходе компрессора не снизится до неко¬торого значения. Кратковременные изменения давления могут перейти в пульсации (помпаж), способные вызвать серьезные повреждения компрессора. Следовательно, нельзя допускать уменьшения расхода газа до значения меньшего, чем критиче¬ское (рис. 4.4).

Зависимость степени сжатия газа от расхода при разных числах оборотов рабочего колеса:

Рис. 4.4, Зависимость степени сжатия газа от расхода при разных числах оборотов рабочего колеса:
РВ, Рк - давление газа на входе в компрессор и выходе из него; n - числа оборотов рабочего колеса; G - расход газа.

Этого можно добиться путем перепуска части газа из линии нагнетания в линию всасывания по байпасной магистрали. При этом расход через компрессор увеличится. Схе¬ма регулирования, реализующая этот метод, представлена на рис. 4.5.

Схема регулирования центробежного компрессора путем перепуска газа по байпасной линии

Рис. 4.5. Схема регулирования центробежного компрессора путем перепуска газа по байпасной линии.

Предположим, что расход газа уменьшился но какой-либо причине, например вследствие увеличения гидравлического сопротивления аппарата, потребляющего этот газ. Тогда давление Рк увеличится. Регулятор давления уменьшит подачу, и давление Рн уменьшится, а перепад Р=РК-РН увеличится. Регулятор перепада увеличивает задание регулятору расхода, который начинает увеличивать перепуск газа из линии нагнетания в линию всасывания, что, с одной стороны, приводят к уменьшению перепада Р, а с другой - к увеличению расхода через ком¬прессор.
Простым методом регулирования работы центробежного компрессора в предпомпажном режиме является выпуск части сжатого газа, в атмосферу. Такое регулирование позволяет поддерживать расход газа выше критического независимо от потребления.
В том случае, если сжимаемый газ ядовит регулирование данным методом неприемлемо, используют методы дросселирования газа по байпасному трубопроводу или отключения компрессора от сети. Последний метод можно применять только при наличии нескольких компрессоров, работающих параллельно, или ресивера большой емкости, установленного на нагнетательной линии.

Регулирование работы дозировочных насосов.

Дозировочные насосы находят широкое применение в промышленности для дозирования и смешения небольших количеств растворов, суспензий и сжиженных газов. Производительность таких насосов можно регулировать изменением числа ходов поршня (штока) или длины хода поршня.

   

Типовое решение автоматизации перемещение жидкостей и газов

Перемещение жидкостей и газов

Типовое решение автоматизации разрабатывается одновременно для процессов перемещения как жидкостей, так и газов, по¬скольку при скорости газа меньше скорости звука движение жидкостей и газов характеризуется одними и теми же законами. Поэтому все приведенные в дальнейшем рассуждения, относящиеся к жидкости, справедливы и для газа.
В качестве объекта управления примем трубопровод 6, по которому транспортируется жидкость от аппарата 1 к аппара¬ту 8, и центробежный насос (компрессор) 2 с приводом от асин¬хронного двигателя 4 (рис. 4.1). Показателем эффективности данного процесса служит расход С перемещаемой жидкости.

Типовая схема автоматизации процесса перемещения жидкости

Рис. 4.1. Типовая схема автоматизации процесса перемещения жидкости
1, 8 - технологические аппараты; 2- насос (компрессор); 3 - подшипники; 4 - электродвигатель; 5 - обратный клапан; 6 - трубопровод; 7 - дроссельный орган.
Процесс перемещения в химической промышленности явля¬ется вспомогательным; его необходимо проводить таким обра¬зом, чтобы обеспечивался эффективный режим основного про¬цесса, обслуживаемого данной установкой перемещения. В связи с этим необходимо поддерживать определенное, чаще всего по¬стоянное, значение расхода С. Это и будет целью управления.
Проведем анализ объекта для выявления возмущений, воз¬можности их ликвидации и путей внесения управляющих воз¬действий.
Массовый расход жидкости в трубопроводе определяют по формуле

G=V/F • p

где V - скорость перемещения жидкости в трубопроводе; F - поперечное сечение трубопровода; р - плотность жидкости.
Скорость V в общем случае зависит от следующих параметров:

V = f (P, м, р

где Р - движущая сила процесса (разность давлений в начале Рн и в кон¬це Рк трубопровода); м - динамическая вязкость перемещаемой жидкости,
Движущая сила Р зависит от характеристик насоса, от дав¬ления в аппаратах, в которые и из которых перемещается жидкость, и от общего гидравлического сопротивления трубопровода (суммы сопротивлений .собственно трубопровода, поворотов, сужений, запорной арматуры).
Насос нормального исполнения с асинхронным двигателем в качестве привода имеет постоянные характеристики. При использовании специального оборудования с изменением характеристик в объект могут быть внесены регулирующие воздействия.
Давление в аппаратах 1 и 8 определяется технологическим режимом процессов, протекающих в них. Если режим предусматривает изменение давлений, то по данным каналам в объект управления будут поступать возмущения.
Изменение общего гидравлического сопротивления трубопровода может быть обусловлено многими причинами. Его можно стабилизировать или же целенаправленно изменять, перемещая подвижную часть дроссельного органа (вентиля, клапана, заслонки), установленного на трубопроводе (дроссельное регули¬рование). 
Вязкость и плотность перемещаемой жидкости определяются технологическим режимом предыдущего процесса, поэтому их изменения являются возмущающими воздействиями, ликвиди¬ровать которые при управлении данным процессом невозможно.
Анализ объекта управления показал, что большую часть возмущающих воздействий не удается ликвидировать. Учитывая это, в качестве регулируемой величины необходимо взять непосредственно показатель эффективности - расход G. Наиболее простым способом регулирования при этом является изменение положения дроссельного органа на трубопроводе нагнетания. Устанавливать дроссельный орган на трубопроводе всасывания не рекомендуется, так как это может привести к кавитации и быстрому разрушению лопаток насоса.
При пуске, наладке и поддержании нормального режима процесса перемещения необходимо контролировать расход G, а также давление во всасывающей и нагнетательной линиях насоса} для правильной эксплуатации установки перемещения требуется контролировать - температуру подшипников и обмоток электродвигателя насоса, температуру и давление смазки и охлаждаю¬щей жидкости; для подсчета технико-экономических показате¬лей процесса следует контролировать количество энергии, потребляемой приводом.
Сигнализации подлежит давление в линии нагнетания; по¬скольку значительное изменение его свидетельствует о серьезных нарушениях процесса. Кроме того, следует сигнализировать давление и наличие потока в системе смазки и охлаждения, температуру подшипников и обмоток электродвигателя, масла и воды. Сигнализируется также положение задвижек в линиях всасывания и нагнетания.
Если давление в линии нагнетания или параметры, характеризующие состояние объекта, продолжают изменяться, несмотря на принятые обслуживающим персоналом меры, то должны сработать автоматические устройства защиты. Они отключают действующий аппарат перемещения и включают резервный (на рисунке не показан).

Регулирование при различных целях управления.

Часто установка перемещения должна обеспечить стабилизацию какого либо параметра процесса, предшествующего процессу перемещения или следующего за ним. Например, может быть поставлена следующая задача: изменением расхода газа поддерживать постоянное давление в аппарате или же изменением расхода жидкости в трубопроводе стабилизировать уровень в аппарате.
Учитывая многообразие процессов химической технологии и задач, которые ставятся при их проведении, можно сказать, что в качестве регулируемой величины при перемещении .потоков могут служить любые параметры этих процессов: температура, концентрация, плотность, толщина пленки, время и т. д.
Если заранее известно, что на установку перемещения будут поступать возмущения, приводящие к изменению расхода (и, следовательно, регулируемой величины) в последующем аппарате, следует применять многоконтурную систему регулирования. Основным регулятором в этой системе будет регулятор параметра, постоянство которого следует обеспечить, а вспомогательным - регулятор расхода.

Регулирование методом дросселирования потока в байпасном трубопроводе.

При использовании поршневых насосов (компрессоров) регулирующие органы устанавливать на нагнетательном трубопроводе нельзя, так как .изменение степени открытия тако¬го органа приводит лишь к изменению давления в нагнетательной линии; расход же практически остается постоянным. Полное закрытие регулирующего органа может привести к такому повышению давления, при котором произойдет разрыв трубопровода или повреждение арматуры на нем.
В этих случаях регулирование может быть осуществлено дроссельном органом, установленным на байпасной линии, соеди¬няющей всасывающий и нагнетательный трубопроводы. Такое же регулирование применяют при использовании шестеренчатых и лопастных насосов. При установке центробежных насосов дросселирование в байпасном трубопроводе применяют редко, так как циркуляция жидкости снижает к.п.д. насоса.
Если по какой-либо причине невозможно дросселировать по¬ток в байпасном трубопроводе поршневых машин, жидкость дросселируют в нагнетательной линии; при этом на байпасном трубопроводе устанавливают предохранительный клапан. При повышении давления до критического значения клапан открывается, и часть жидкости байпасируется во всасывающую линию.

Регулирование изменением числа оборотов вала насоса,

Дроссельное регулирование имеет существенный недостаток низкую экономичность, так как создаваемый насосом напор используется не полиостью, а потери на регулирующем органе при дросселировании жидкости уменьшают к.п.д. насоса. Более экономичен метод регулирования изменением числа оборотов рабочего вала насоса. Как известно, плавное регулирование частоты вращения легко осуществить при использовании электродвигате¬лей постоянного тока, но ввиду высокой стоимости они не нашли широкого применения в качестве приводов насосов.
При использовании асинхронных электродвигателей перемен¬ного тока возможны следующие способы изменения числа оборо¬тов вала: переключение обмотки статора электродвигателя на различное число пар полюсов, введение реостата в цепь ротора, изменение частоты питающего тока, применение коллекторных электродвигателей. Однако реализация любого из них требует сложного и дорогостоящего оборудования, поэтому они также не нашли широкого применения в промышленности.
В настоящее время наиболее эффективным методом измене¬ния числа оборотов вала насоса является использование вариа¬торов и муфт скольжения, которые позволяют изменять числе оборотов рабочего вала насоса при неизменном числе оборотов вала электродвигателя. Кроме того, они обеспечивают быстрое и легкое дистанционное сцепление и расщепление электродвигателя и насоса; сглаживание ударов от электродвигателя к насо¬су, и наоборот; возможность разгона насоса с начальным момен¬том сопротивления, превышающим пусковой момент двигателя; ограничение передаваемого вращающего момента.

   

Типовое решение автоматизации. Отстаивание жидких систем

Основные принципы управления при автоматизации процессов отстаивания рассмотрим на примере отстойника со скребковым устройством (рис. 4.8). Процессы отстаивания проводятся, как правило, с целью полного извлечения твердой фазы (ценного продукта) из жидкости, поэтому показателем эффективности процесса будем считать концентрацию твердой фазы в осветленной жидкости, а целью управления - поддержание ее на заданном (минимально возможном для данных производственных условий) значении.

Типовая схема автоматизации процесса отстаивания:

Рис. 4.8. Типовая схема автоматизации процесса отстаивания:
1 - отстойник; 2 - переливное устройство; 3 - мешалка; Б - момент на валу электродвигателя; В - мутность жидкости.

В объект управления процесса разделения могут поступать многочисленные -возмущающие воздействия: изменение расхода суспензии, плотностей твердой и жидкой фаз, концентрации и вязкости суспензии, дисперсности (гранулометрического состава) твердой фазы. Все эти возмущения определяются технологическим режимом предыдущего процесса, поэтому устранить их при управлении процессом отстаивания невозможно. Особенно сильными возмущениями являются изменения расхода суспензии и концентрации твердой фазы в ней.
Рассмотрим, каким образом при наличии перечисленных возмущений можно достичь цели управления. На твердую частицу суспензии в отстойнике действуют одновременно сила инерции и силы тяжести. Поэтому истинное значение скорости V движущейся частицы является результирующей горизонтальной составляющей скорости Vг и вертикальной составляющей Vв, а положение частицы определяется отношением этих скоростей: если VВ<<VГ, то частица оседает в бункер отстойника; если же Vг>>Vв, то частица уносится в выходной патрубок. Скорость осаждения Vв частиц, имеющих шарообразную форму, для высо¬коконцентрированных суспензий может быть рассчитана по уравнению

где d - диаметр частицы; g - ускорение свободного падения; рг, рж -плотность соответственно твердой и жидкой фаз; е - объемная доля жидкости в суспензии; м - динамическая вязкость суспензии.
Анализ уравнения показывает, что скорость Vв является пере¬менной величиной, зависящей от изменяющихся во времени параметров: диаметра частиц, концентрации твердой фазы, плотностей фаз, динамической вязкости суспензии. Стабилизировать скорость невозможно, так как все перечисленные параметры определяются предшествующим процессом. Для того чтобы при изменяющейся скорости осаждения Vв частицы успевали оседать в бункер, подбирают такие значения расхода суспензии и диа¬метра отстойника, которые обеспечивают нужное соответствие скоростей Vв и Vг. Необходимость в непосредственном регулировании показателя эффективности процесса при этом отпадает.
Уровень жидкости в отстойнике поддерживается постоянным за счет свободного перелива осветленной жидкости.
В отстойнике необходимо поддерживать на постоянной высоте границу раздела зон осаждения и уплотнения. Эта высота зависит от расхода сгущенной суспензии, поэтому регулирующее воздействие вносится изменением степени открытия специальных клапанов (для высоковязких жидкостей) на линии сгущенной суспензии.
В качестве контролируемых величин принимают расходы исходной и сгущенной суспензий, осветленной жидкости, а также мутность осветленной жидкости, которая является косвенным параметром, характеризующим показатель эффективности и плотность сгущенной суспензии. Контролируется, кроме того, уровень границы раздела зон при помощи гидростатического приемника с непрерывной промывкой. Работа механической части отстойников контролируется путем непосредственного измерения момента на валу двигателя. Можно проводить контроль и по косвенному параметру - мощности, потребляемой приводом электродвигателя. Перегрузка электродвигателя сигнализируется. В случае повышенных перегрузок дается сигнал в схему защиты. Сигнализации подлежит также повышение мутности осветленной жидкости.

Регулирование изменения расхода суспензии.

В отдельных случаях расход исходной суспензии не зависит от предшествующего технологического процесса; тогда его можно изменять, стабилизируя мутность осветленной жидкости, т. е. уменьшать при увеличении мутности выше заданного значения и увеличивать при ее уменьшении. При отсутствии датчика мутности расход суспензии стабилизируют, что приводит к ликвидации одного из самых сильных возмущений.

Регулирование плотности сгущенной суспензии. 

В ряде отстойников проводится процесс сгущения суспензии до заданного содержания твердой фазы (влажность осадка при отстаивании может колебаться от 35 до 55%); при этом содержание твердой фазы в сливе приобретает второстепенное значение. В этом случае идут по пути регулирования плотности сгущенной суспензии изменением ее расхода.
В отдельных технологических схемах при повышенных требованиях к концентрации твердой фазы в сгущенной суспензии применяют рециркуляцию части сгущенной суспензии из промежуточной емкости. В этих случаях плотность регулируют путем изменения коэффициента рециркуляции, т. е. отношения расхода циркулирующей жидкости к общему расходу сгущенной суспензии (рис. 4.9).

Схемы регулирования плотности сгущенной суспензии с рециркуляцией:

Рис. 4.9. Схемы регулирования плотности сгущенной суспензии с рециркуляцией:
1 - отстойник; 2 - промежуточная емкость; 3 - регулирующее устройство перераспределения расходов.

Регулирование подачи коагулянта.

 Для лучшего отстаивания некоторых веществ в суспензию добавляют коагулянт - вещество, способствующее коагулированию (укрупнению) твердой фазы. Расход коагулянта изменяют в зависимости от высоты границы раздела между зонами уплотнения и осаждения или в зависимости от расхода исходной суспензии.

Регулирование режима работы гребкового механизма.

Плотность осадка можно регулировать и по косвенному параметру - нагрузке на валу гребкового устройства, которая связана прямой зависимостью с плотностью сгущенной суспензии в нижней части отстойника. Регулятор нагрузки в этом случае последовательно воздействует сначала на исполнительный механизм на магистрали сгущенной суспензии, а затем на привод подъема гребков. При перегрузке привода происходит подъем скребкового устройства, и наоборот.
Управление процессом противоточного отстаивания. В случае если один отстойник не справляется с поставленной задачей, устанавливают несколько аппаратов, соединяя их по противоточной схеме. Такую схему применяют, например, на калийных предприятиях. Степень извлечения твердой фазы, обеспечиваемая всей схемой, во многом определяется работой первого отстойника, поэтому для управления процессом отстаивания в нем регулируют плотность сгущенной суспензии и высоту раздела зон (подачей коагулянта); контролируют расход суспензии и щелоков, мутность осадка. Требования к работе следующих отстойников менее жесткие, поэтому на них установлены только регуляторы плотности сгущенной суспензии, а расход коагулянта изменяется вручную.

Управление отстойником периодического действия. 

В промышленности находят применение отстойники периодического действия, в которых выгрузка осадка является отдельной операцией. Для автоматического перевода отстойника с режима отстаивания на режим выгрузки на определенной высоте аппарата устанавливают датчик прозрачности, который дает сигнал на закрытие трубопровода исходной суспензии и включение откачивающего насоса.

   

Типовой процесс автоматизации нагревание и охлаждение часть 2

Регулирование процесса в топках. 

При сушке, выпаривании, обжиге и других процессах в качестве теплоносителя часто используют топочные газы, получаемые в топках в результате сжигания топлива. В зависимости от требований, предъявляемых к топочному газу, в промышленности используют топки разных конструкций. Наиболее простой является топка с инжекционными горелками (рис. 4.22,с). Расход топлива в этом случае изменяется в зависимости от температуры (или какого-либо другого параметра) того процесса, в котором используют полученные топочные газы. Соотношение расходов топлива и воздуха, подсасываемого из атмосферы, поддерживается постоянным за счет изменения инжекционной способности горелки при изменении расхода топлива. Температуру топочных газов сразу после топки регулируют изменением расхода вторичного воздуха.
При использовании горелок с принудительной подачей первичного воздуха возникает необходимость в регуляторе соотношения топливо - первичный воздух (рис. 4.22, б).

Рис. 4.22. Схемы регулирования топок:
а - с инжекцнонной горелкой; б - с принудительной подачей первичного воздуха; 1 - топка; 2 - смесительная камера; 3 - технологический аппарат; 4 - инжекционная горелка.

В отдельных случаях разбавляющий воздух подается одновременно в охлаждающую рубашку топки и в смесительную камеру. Расход вторичного воздуха при такой технологии изменяется в зависимости от температуры во внутренней футеровке топки или температуры в топке вблизи футеровки, а расход третичного воздуха - от температуры после смесительной камеры.

Регулирование работы парокотельных установок.

На многих химических предприятиях имеются свои парокотельные уста¬новки, предназначенные для получения пара заданных параметров. Основной регулируемой величиной парокотельной установки является давление получаемого пара. Заметим, что для на¬сыщенного пара существует определенная зависимость между давлением и температурой, поэтому стабилизация давления обеспечит и постоянство температуры.
Одной из серьезных задач при регулировании процесса горения в топках парокотельных установок является экономичное 'сжигание топлива благодаря подаче определенного количества воздуха. Показателем соответствия расходов воздуха и топлива может служить коэффициент избытка воздуха а=СВ./Св.т> >1 (где Св.д - действительное значение расхода воздуха; Св.т - теоретическое значение расхода воздуха, обеспечивающего полное сжигание топлива). При постоянной теплотворной способности топлива заданное значение коэффициента а (1,1) может обеспечить простой регулятор соотношения расходов топлива и воздуха (рис. 4.23).
Если же качество топлива изменяется, то требуется более сложная система регулирования, позволяющая непрерывно определять оптимальное значение по содержанию кислорода в топочных газах.

Схема регулирования работы парокотельной установки.

Рис. 4.23. Схема регулирования работы парокотельной установки.

Схема регулирования построена таким образом, что изменение давления пара вызывает одновременно изменение подачи топлива и воздуха.

Изменение разрежения в топке отражается на расходах топлива и воздуха. Для компенсации этого возмущающего воздей¬ствия устанавливают регулятор разрежения в топке.
Поддержание материального баланса в схеме обеспечивается регулятором уровня, при этом регулирующее воздействие вносится изменением расхода питательной воды.

 

Искусственное охлаждение

Типовое решение автоматизации рассмотрим на примере установки охлаждения, состоящей из поршневого компрессора 1, конденсатора 2, испарителя 3 (с кипящим хладоагентом в межтрубном пространстве) и дросселирующего элемента 4 (рис. 4.24). В качестве показателя эффективности примем конечную температуру охлаждаемого продукта tК (часто рассола). Поддержание ее на постоянном значении путем корректировки технологических режимов аппаратов, входящих в объект управления, и будет являться целью управления процессом искусственного охлаждения.

Типовая схема автоматизации процесса искусственного охлаждения:

Рис. 4.24. Типовая схема автоматизации процесса искусственного охлаждения:
1 - компрессор; 2 - конденсатор; 3 - испаритель; 4 - дросселирующий элемент; 5 - выносная камера.

Конечная температура продукта определяется параметрами охлаждаемого продукта и хладоагента, поступающих в испаритель. Параметры продукта зависят от хода технологического процесса, для проведения которого применяется данная установка охлаждения. С их изменением, а также с изменением параметров воды, подаваемой в конденсатор, в объект будут поступать внешние возмущения; температура 1К при этом будет отклоняться от заданного значения. С другой стороны, варьируя параметры хладоагента (в частности, его расход), сравнительно легко управлять процессом искусственного охлаждения. Из сказанного следует, что основным узлом регулирования процесса искусственного охлаждения должен быть регулятор температуры tк, а регулирующие воздействия целесообразно вносить изменением расхода хладоагента, используя метод пуска и останова поршневого компрессора, вошедшего в типовой объект управления. При этом холодопроизводительность установки будет изменяться так, что возмущающие и регулирующие воздействия полностью компенсируются.
Одним из сильных возмущений, которые могут поступать в испаритель через дросселирующий элемент 4, является изменение давления в 'Конденсаторе 2. Последнее может произойти, например, при колебаниях параметров прямой воды. Для ликвидации таких возмущений давление конденсации стабилизируют, изменяя расход воды, подаваемой в испаритель.
Работа испарителя в значительной мере определяется также степенью заполнения его жидким хладоагентом. Для большинства испарителей существует оптимальная степень заполнения, при отклонении от которой эффективность процесса снижается вследствие неполного использования теплопередающей поверх¬ности испарителя или из-за «влажного» хода компрессора. Определенная степень заполнения поддерживается стабилизацией уровня, который 'измеряется в выносной камере 5. Регулятор уровня воздействует на регулирующий орган, помещенный между конденсатором и испарителем. Причем в случае непрерывного дросселирования хладоагента, что обеспечивают все регуляторы, кроме позиционных, регулирующий орган будет одновременно служить и дросселирующим элементом 4, изменяющим давление хладоагента с величины, соответствующей давлению конденсации, до значения, соответствующего давлению кипения.
Для безаварийной работы установки следует сигнализировать о повышении уровня хладоагента выше предельного значения для предотвращения «влажного» хода компрессора, а также о понижении давления паров хладрагента после испарителя ввиду возможности замерзания продукта. В случае дости¬жения этими параметрами предельно допустимых значений срабатывают устройства защиты, отключающие компрессор.
При искусственном охлаждении контролю подлежат расходы продукта и охлаждающей воды, а также их начальные и конечные температуры. Сигнализации и контролю, кроме того, подлежат все параметры компримирования газов.
Регулирование компрессоров уста¬новок искусственного охлаждения. В зависимости от типа компрессора регулирование его работы может производиться различными способами В наиболее мощных холодильных установках используют винтовые компрессоры, снабженные специальным золотником (ползуном). Перемещаясь параллельно осям винтов под действием исполнительного механизма регулятора, золотник изменяет их ход сжатия и тем самым - производительность компрессора.
Регулирование перегрева паров после испарителя. При использовании хладоагентов с низкой теплотой парообразования, например фреонов, нельзя принимать уровень хладоагента в качестве параметра, характеризующего степень заполнения испарителя (ввиду бурного вспенивания). Кроме того, точность работы уровнемера с выносной камерой часто недостаточно высока, так как уровень жидкости в этой камере может отличаться от уровня в самом испарителе. Это обусловливается различной степенью насыщения кипящей жидкости паром и, следовательно, различным значением плотности кипящей жидкости.
Косвенным параметром, по значению которого судят о степени заполнения испарителя, служит перегрев паров на выходе из испарителя: чем больше перегрев, тем меньше заполнение, т. е. больше теплопередающая поверхность, и наоборот. В зависимости от разности температур кипящего хладоагента и перегретых паров позиционный регулятор открывает или закрывает «лапан на линии жидкого хладоагента.
Для плавного регулирования перегрева разработан специальный терморегулирующий вентиль (рис. 4.25), основным элементом которого является мембрана 1. Ее положение соответствует разности давлений в термобаллоне 2 и паровой линии, а эти давления в свою очередь определяются температурами перегретого пара и кипения хладоагента.

Терморегулирующий вентиль:

Рис. 4.25. Терморегулирующий вентиль:
1 - мембрана; 2 - термобаллон; 3 - трубка; 4 - испаритель; 5 - клапан; 6 - шток; 7 - пружина; 8 - сальник.

   

Cтраница 7 из 13

Яндекс.Метрика Rambler's Top100