Автоматизация ТП

Типовой процесс автоматизации нагревание и охлаждение часть 2

Регулирование процесса в топках. 

При сушке, выпаривании, обжиге и других процессах в качестве теплоносителя часто используют топочные газы, получаемые в топках в результате сжигания топлива. В зависимости от требований, предъявляемых к топочному газу, в промышленности используют топки разных конструкций. Наиболее простой является топка с инжекционными горелками (рис. 4.22,с). Расход топлива в этом случае изменяется в зависимости от температуры (или какого-либо другого параметра) того процесса, в котором используют полученные топочные газы. Соотношение расходов топлива и воздуха, подсасываемого из атмосферы, поддерживается постоянным за счет изменения инжекционной способности горелки при изменении расхода топлива. Температуру топочных газов сразу после топки регулируют изменением расхода вторичного воздуха.
При использовании горелок с принудительной подачей первичного воздуха возникает необходимость в регуляторе соотношения топливо - первичный воздух (рис. 4.22, б).

Схемы регулирования топок:

Рис. 4.22. Схемы регулирования топок:
а - с инжекцнонной горелкой; б - с принудительной подачей первичного воздуха; 1 - топка; 2 - смесительная камера; 3 - технологический аппарат; 4 - инжекционная горелка.

В отдельных случаях разбавляющий воздух подается одновременно в охлаждающую рубашку топки и в смесительную камеру. Расход вторичного воздуха при такой технологии изменяется в зависимости от температуры во внутренней футеровке топки или температуры в топке вблизи футеровки, а расход третичного воздуха - от температуры после смесительной камеры.

Регулирование работы парокотельных установок.

На многих химических предприятиях имеются свои парокотельные уста¬новки, предназначенные для получения пара заданных параметров. Основной регулируемой величиной парокотельной установки является давление получаемого пара. Заметим, что для на¬сыщенного пара существует определенная зависимость между давлением и температурой, поэтому стабилизация давления обеспечит и постоянство температуры.
Одной из серьезных задач при регулировании процесса горения в топках парокотельных установок является экономичное 'сжигание топлива благодаря подаче определенного количества воздуха. Показателем соответствия расходов воздуха и топлива может служить коэффициент избытка воздуха а=СВ./Св.т> >1 (где Св.д - действительное значение расхода воздуха; Св.т - теоретическое значение расхода воздуха, обеспечивающего полное сжигание топлива). При постоянной теплотворной способности топлива заданное значение коэффициента а (1,1) может обеспечить простой регулятор соотношения расходов топлива и воздуха (рис. 4.23).
Если же качество топлива изменяется, то требуется более сложная система регулирования, позволяющая непрерывно определять оптимальное значение по содержанию кислорода в топочных газах.

Схема регулирования работы парокотельной установки.

Рис. 4.23. Схема регулирования работы парокотельной установки.

Схема регулирования построена таким образом, что изменение давления пара вызывает одновременно изменение подачи топлива и воздуха.

Изменение разрежения в топке отражается на расходах топлива и воздуха. Для компенсации этого возмущающего воздействия устанавливают регулятор разрежения в топке.
Поддержание материального баланса в схеме обеспечивается регулятором уровня, при этом регулирующее воздействие вносится изменением расхода питательной воды.

Искусственное охлаждение

Типовое решение автоматизации рассмотрим на примере установки охлаждения, состоящей из поршневого компрессора 1, конденсатора 2, испарителя 3 (с кипящим хладоагентом в межтрубном пространстве) и дросселирующего элемента 4 (рис. 4.24). В качестве показателя эффективности примем конечную температуру охлаждаемого продукта tК (часто рассола). Поддержание ее на постоянном значении путем корректировки технологических режимов аппаратов, входящих в объект управления, и будет являться целью управления процессом искусственного охлаждения.

Типовая схема автоматизации процесса искусственного охлаждения:

Рис. 4.24. Типовая схема автоматизации процесса искусственного охлаждения:
1 - компрессор; 2 - конденсатор; 3 - испаритель; 4 - дросселирующий элемент; 5 - выносная камера.

Конечная температура продукта определяется параметрами охлаждаемого продукта и хладоагента, поступающих в испаритель. Параметры продукта зависят от хода технологического процесса, для проведения которого применяется данная установка охлаждения. С их изменением, а также с изменением параметров воды, подаваемой в конденсатор, в объект будут поступать внешние возмущения; температура 1К при этом будет отклоняться от заданного значения. С другой стороны, варьируя параметры хладоагента (в частности, его расход), сравнительно легко управлять процессом искусственного охлаждения. Из сказанного следует, что основным узлом регулирования процесса искусственного охлаждения должен быть регулятор температуры tк, а регулирующие воздействия целесообразно вносить изменением расхода хладоагента, используя метод пуска и останова поршневого компрессора, вошедшего в типовой объект управления. При этом холодопроизводительность установки будет изменяться так, что возмущающие и регулирующие воздействия полностью компенсируются.
Одним из сильных возмущений, которые могут поступать в испаритель через дросселирующий элемент 4, является изменение давления в 'Конденсаторе 2. Последнее может произойти, например, при колебаниях параметров прямой воды. Для ликвидации таких возмущений давление конденсации стабилизируют, изменяя расход воды, подаваемой в испаритель.
Работа испарителя в значительной мере определяется также степенью заполнения его жидким хладоагентом. Для большинства испарителей существует оптимальная степень заполнения, при отклонении от которой эффективность процесса снижается вследствие неполного использования теплопередающей поверх¬ности испарителя или из-за «влажного» хода компрессора. Определенная степень заполнения поддерживается стабилизацией уровня, который 'измеряется в выносной камере 5. Регулятор уровня воздействует на регулирующий орган, помещенный между конденсатором и испарителем. Причем в случае непрерывного дросселирования хладоагента, что обеспечивают все регуляторы, кроме позиционных, регулирующий орган будет одновременно служить и дросселирующим элементом 4, изменяющим давление хладоагента с величины, соответствующей давлению конденсации, до значения, соответствующего давлению кипения.
Для безаварийной работы установки следует сигнализировать о повышении уровня хладоагента выше предельного значения для предотвращения «влажного» хода компрессора, а также о понижении давления паров хладрагента после испарителя ввиду возможности замерзания продукта. В случае дости¬жения этими параметрами предельно допустимых значений срабатывают устройства защиты, отключающие компрессор.
При искусственном охлаждении контролю подлежат расходы продукта и охлаждающей воды, а также их начальные и конечные температуры. Сигнализации и контролю, кроме того, подлежат все параметры компримирования газов.
Регулирование компрессоров уста¬новок искусственного охлаждения. В зависимости от типа компрессора регулирование его работы может производиться различными способами В наиболее мощных холодильных установках используют винтовые компрессоры, снабженные специальным золотником (ползуном). Перемещаясь параллельно осям винтов под действием исполнительного механизма регулятора, золотник изменяет их ход сжатия и тем самым - производительность компрессора.
Регулирование перегрева паров после испарителя. При использовании хладоагентов с низкой теплотой парообразования, например фреонов, нельзя принимать уровень хладоагента в качестве параметра, характеризующего степень заполнения испарителя (ввиду бурного вспенивания). Кроме того, точность работы уровнемера с выносной камерой часто недостаточно высока, так как уровень жидкости в этой камере может отличаться от уровня в самом испарителе. Это обусловливается различной степенью насыщения кипящей жидкости паром и, следовательно, различным значением плотности кипящей жидкости.
Косвенным параметром, по значению которого судят о степени заполнения испарителя, служит перегрев паров на выходе из испарителя: чем больше перегрев, тем меньше заполнение, т. е. больше теплопередающая поверхность, и наоборот. В зависимости от разности температур кипящего хладоагента и перегретых паров позиционный регулятор открывает или закрывает «лапан на линии жидкого хладоагента.
Для плавного регулирования перегрева разработан специальный терморегулирующий вентиль (рис. 4.25), основным элементом которого является мембрана 1. Ее положение соответствует разности давлений в термобаллоне 2 и паровой линии, а эти давления в свою очередь определяются температурами перегретого пара и кипения хладоагента.

Терморегулирующий вентиль:

Рис. 4.25. Терморегулирующий вентиль:
1 - мембрана; 2 - термобаллон; 3 - трубка; 4 - испаритель; 5 - клапан; 6 - шток; 7 - пружина; 8 - сальник.

 

Типовой процесс автоматизации нагревание и охлаждение часть 1

Основные принципы управления процессом 'Нагревания рассмотрим на примере поверхностного кожухотрубчатого теплообменника (рис. 4.17), в который подают нагреваемый продукт и теплоноситель. Показателем эффективности данного процесса является температура tn" продукта на выходе из теплообменника, а целью управления - поддержание этой температуры на определенном уровне.
Зависимость температуры tп" от параметров процесса может быть найдена из уравнения теплового баланса:

где Gп, Gт расходы соответственно продукта и горячего теплоносителя; сп> Ст - удельные теплоемкости продукта и горячего теплоносителя; tn', tг' - температуры продукта и горячего теплоносителя на входе в теплообменник; tт" - температура горячего теплоносителя на выходе из теплообменника.
Решая данное уравнение относительно tп", получим:

Типовая схема автоматизации процесса нагревания.

Рис. 4.17. Типовая схема автоматизации процесса нагревания.

Расход теплоносителя Gт можно легко стабилизировать или использовать для внесения эффективных регулирующих воздействий. Расход продукта Gп определяется другими технологическими процес¬сами, а не процессом .нагревания, поэтому он не может быть ни стабилизирован, и использован для внесения регулирующих воздействий; при изменении Gп в теплообменник будут поступать сильные возмущения. Температуры tп и t'т, а также удельные теплоемкости сп и ст определяются технологическими режимами других процессов, поэтому стабилизировать их при ведении процесса нагревания невозможно. К неликвидируемым возмущениям относятся также изменение температуры окружающей среды и свойств теплопередающей стенки вследствие отложения солей, а также коррозии.
Анализ объекта управления показал, что большую часть возмущающих воздействий невозможно устранить. (В связи с этим следует в качестве регулируемой величины брать температуру tn", а регулирующее воздействие осуществлять путем изменения расхода Gт.
Теплообменники как объекты регулирования температуры обладают большими запаздываниями, поэтому следует уделять особое внимание выбору места установки датчика и закону регулирования. Для уменьшения транспортных запаздываний датчик температуры необходимо помещать как можно ближе к теплообменнику. Для устранения запаздывания значительный эффект может дать применение регуляторов с предварением и исполнительных механизмов с позиционерами.
В качестве контролируемых величин следует принимать расходы теплоносителей, их конечные и начальные температуры, давления. Знание текущих значений этих параметров необходимо для нормального пуска, наладки и эксплуатации процесса. Расход Gт требуется знать также для подсчета технико-экономических показателей процесса, а расход Gп и температуру t для оперативного управления процессом.
Сигнализации подлежат температура tn" и расход продукта. В связи с тем что резкое падение расхода Оп может послужить причиной выхода из строя теплообменника, устройство защиты в этом случае должно перекрывать линию горячего теплоносителя.

 Двухконтурные системы регулирования процесса нагревания с использованием в качестве вспомогательной регулируемой величины

Рис. 4.18. Двухконтурные системы регулирования процесса нагревания с использованием в качестве вспомогательной регулируемой величины расхода теплоносителя (а), давления пара (б) и давления в межтрубном пространстве (в).

Все рассуждения в отношении процесса нагревания справедливы и для процесса охлаждения. Объектом управления в этом случае будет являться кожухотрубный теплообменник, в который подается холодоноситель и охлаждаемый продукт; показателем эффективности - конечная температура продукта, а целью управления - поддержание этой температуры на заданном значении. Основным узлом управления будет регулятор конечной температуры охлаждаемого продукта, регулирование же будет осуществляться путем изменения расхода холодоносителя.

Каскадно-связанное регулирование.

Использование двухконтурных САР значительно улучшает качество регулирования конечной температуры продукта (основная регулируемая величина), если вспомогательной величиной выбрать параметр, изменение которого будет сильным возмущением для процесса теплообмена. Часто в качестве вспомогательного параметра выбирают расход теплоносителя (рис. 4.18,а); если теплоносителем служит пар с переменным давлением, то предпочтительнее брать давление теплоносителя (рис. 4.18,6) или давление в межтрубном пространстве (рис. 4.18,б). Последний вариант схемы следует использовать при переменных расходе и температуре нагреваемого продукта, так как давление в межтрубном пространстве является гораздо менее инерционным параметром, чем конечная температура продукта.
Регулирование процесса байпасированием продукта. Для регулирования систем, в которых изменение расхода теплоносителя недопустимо, используют метод байпасирования. Регулирующее воздействие в этих случаях осуществляется изменением расхода байпасируемого продукта (рис. 4.19,с).

Схема регулирования температуры изменением расхода продукта в байпйсном .трубопроводе:

Рис. 4.19. Схема регулирования температуры изменением расхода продукта в байпйсном .трубопроводе:
а - с помощью одного клапана; б - с помощью двух клапанов; в - с помощью трехходового клапана.

Поскольку перемещение регулирующего органа на байпасной линии все же приводит к некоторому изменению расхода продукта, при высоких требованиях к постоянству этого расхода устанавливают два мембранных исполнительных механизма разных типов (НО и НЗ, рис. 4.19,6). Аналогичный эффект достигается при установке трехходового смесительного клапана (рис. 4.19,в).
Регулирование методом байпасирования. улучшает динамическую характеристику системы, так как при этом из цепи регулирования исключается теплообменник.

Регулирование процесса изменением расхода конденсата греющего пара.
Если теплообменник работает при частичном заливе конденсата, регулирующие воздействия можно вносить изменением расхода конденсата. Это влечет за собой изменение уровня конденсата в теплообменнике. При этом перераспределяются поверхности теплообмена между конденсирующимся паром и продуктом, с одной стороны, и конденсатом и продуктом - с другой. Интенсивность теплообмена, а затем и температура продукта на выходе теплообменника меняются. Такая система позволяет повысить эффективность работы теплообменника на 6 - 7% благодаря полному использованию тепла пара и конденсата. Однако вследствие больших запаздываний эта система может быть рекомендована лишь при условии отсутствия резких возмущающих воздействий.

Регулирование процесса изменением температуры горячего-теплоносителя. 

Если насос теплоносителя установлен после теплообменника, то стабилизировать конечную температуру продукта можно путем изменения начальной температуры горячего теплоносителя за счет рециркуляции части отработанного теплоносителя. Достоинством данного метода является постоянство расхода и скорости теплоносителя в теплообменнике, что обеспечивает высокие и стабильные значения коэффициента теплоотдачи.

Регулирование процесса изменением расхода продукта.

Если для качественного управления процессом теплообмена допустимо изменение или стабилизация расхода продукта, то в зависимости от возможных возмущающих воздействий может быть принят один из вариантов схем регулирования, показанных на рис. 4.20. Стабилизирующие регуляторы расхода теплоносителя и расхода продукта ликвидируют возмущения до поступления их в систему.

Схемы регулирования процесса нагревания:

Рис. 4.20. Схемы регулирования процесса нагревания:
а - со стабилизацией расхода продукта; б - с изменением расхода продукта в зависи¬мости от конечной температуры продукта.

Регулирование процесса в теплообменниках смешения.

Малейшие изменения параметров теплоносителя при непосредственном смешении двух и более жидкостей приводят к значительным и быстрым изменениям конечной температуры продукта, поэтому при управлении теплообменников смешения часто применяют связанное регулирование и регулирование соотношения расхода теплоносителя и продукта с коррекцией по температуре продукта.

Регулирование работы трубчатых печей.

В нефтеперерабатывающей и нефтехимической промышленности широкое применение находят трубчатые печи, в которых продукт, непрерывно прокачиваемый через змеевик, нагревается за счет тепла, выделяющегося при сжигании топлива. Трубчатая печь является сложным объектом регулирования; стабилизацию конечной температуры продукта в ней необходимо обеспечить при значительно изменяющихся температуре и расходе продукта. Постоянно изменяется также состояние змеевика и тепловой изоляции.
Компенсация всех воздействий осуществляется изменением количества подаваемого в печь топлива.
В связи с тем, что для трубчатой печи характерны большие запаздывания (20 - 30 мин по каналу «расход топлива - конечная температура продукта»), целесообразно использовать связанное регулирование. На рис. 4.21, с представлена схема регулирования расхода топлива с коррекцией по температуре нагреваемого продукта на выходе из печи. Качество регулирования заметно улучшается при введении вспомогательного контура регулирования температуры топочных газов над перевальной стенкой. Это улучшение сильно влияет на температуру продукта на выходе из печи. Схема на рис. 4.21,6 обеспечивает регулирование температуры продукта на выходе из печи с учетом изменений температуры над перевальной стенкой и расхода нагреваемого продукта.
Качество регулирования можно улучшить также, введя дополнительно регулятор расхода .нагреваемого продукта.

Схемы связанного регулирования процесса в трубчатой печи;

Рис. 4.21. Схемы связанного регулирования процесса в трубчатой печи;

   

Типовое решение автоматизации для процесса абсорбции

В качестве объекта управления процессом абсорбции примем абсорбционную установку, состоящую из абсорбционной колонны и двух холодильников - на линиях абсорбента и газовой смеси (рис. 4.40). Показателем эффективности процесса является концентрация V извлекаемого компонента в обедненной смеси, а целью управления - достижение определенного (минимально возможного для данных производственных условий) значения этой концентрации.
Концентрация Ук определяется разностью количеств извле¬каемого компонента, поступающего с газовой смесью и погло¬щаемого из нее абсорбентом.
Количество компонента, поступающего в колонну, рассчиты¬вается по уравнению М = ССУН, т. е. однозначно определяется расходом газовой смеси Сс я начальной концентрацией в ней извлекаемого компонента Ун.
Количество же компонента, который переходит из газовой фазы в жидкую, определяется следующим образом:

M=K F y

K – коэффициент массопередачи; F - поверхность контакта; y – средняя движущая сила процесса.
Если учесть, что для конкретной колонны коэффициент К и поверхность Т7 -величины малоизменяющиеся, то количество М в основном будет зависеть от движущихся сил на входе в аппарат Y и на выходе из аппарата y2, т. е. от положения рабочей и равновесной линий процесса (рис. 4.41). Положение равновесной линии определяется температурой и давлением процесса (рис. 4.42), а положение рабочей линии - начальной и конечной концентрациями компонента в обеих фазах. Если цель управления достигнута, концентрация Ук будет постоянной; в жидкой фазе (Хк) она определяется удельным расходом жидкости Gа/Gс (где Gа -расход абсорбента).
Таким образом, концентрация Ук зависит от расхода газовой смеси, концентраций Хн Ун, отношения расходов Gа/Gс, температуры и давления в аппарате.
Изменения расхода газовой смеси могут быть сильными воз¬мущениями, поэтому расход газа следует стабилизировать. Изменять же его с целью регулирования показателя эффективности нецелесообразно, так как при этом производительность абсорбера может оказаться ниже расчетной, и, следовательно, экономичность процесса снизится.
Концентрации Хн и Ун определяются режимами других тех¬нологических процессов; с их изменением в объект регулиро¬вания будут «носиться возмущающие воздействия.
Отношение расходов Gа/Gс можно поддерживать постоянным путем стабилизации обоих расходов. Это отношение можно использовать также для регулирования процесса, причем изменять его следует путем изменения расхода Gа.

Диаграмма х - у:

Рис. 4.41. Диаграмма х - у: 

х и у - содержание поглощаемого компонента в жидкости н газе.

Влияние давления (а) и температуры (б) на процесс абсорбции:

Рис. 4.42. Влияние давления (а) и температуры (б) на процесс абсорбции:
х и у - содержание поглощаемого компонента в жидкости и газе.

Температура в абсорбере зависит от многих параметров: температуры, теплоемкости и расхода газовой и жидкой фаз,интенсивности массообмена между фазами (процесс абсорбции экзотермичен), потерь тепла в окружающую среду. Часть этих параметров обычно подвержена значительным колебаниям во времени; это относится, например, к интенсивности массообмена, которая для достижения цели управления должна быть переменной при изменяющихся концентрациях Хн, УН. Такие возмущения приводят к нарушению теплового баланса и, следовательно, к -изменению температуры в абсорбере. Чтобы этого не .происходило, температуру следовало бы регулировать, однако в рассматриваемом абсорбере нет внутреннего охлаждения, поэтому ограничиваются стабилизацией температур абсорбента и газовой смеси на входе в абсорбер путем изменения расходов хладоносителей.
Давление в абсорбере целесообразно стабилизировать путем изменения расхода обедненной смеси.
Итак, стабилизировать все параметры, влияющие на показатель эффективности, практически невозможно. (Поэтому в качестве регулируемой величины следует взять концентрацию Ук, а регулирующие воздействия реализовать изменением отношения расходов Gа/Gс. Для улучшения качества регулирования показателя эффективности надо предусмотреть узлы регулирования расхода Gс, температур tс и t давления в колонне.
В нижней части абсорбера должно находиться некоторое количество жидкости, обеспечивающее гидравлический затвор, что исключает поступление газовой смеси из абсорбера в линию насыщенного абсорбента и позволяет регулировать давление в абсорбере. Постоянное количество этой жидкости поддерживается регулированием уровня в абсорбере путем изменения расхода насыщенного абсорбента.
В качестве параметров, которые необходимо контролировать, следует выбрать расход и температуру исходного и насыщенного абсорбентов, исходной и обедненной газовой смеси, хладоносителей, а также концентрацию извлекаемого компонента в обедненной смеси, уровень в нижней части колонны, температуру по высоте колонны, давление и перепад давления в ней. Сигнализации подлежат отклонения давления в колонне от предельных значений.
Схемой автоматизации должно быть предусмотрено устройство защиты, исключающее значительное повышение давления в колонне. Это устройство при определенном значении давления обеспечивает прекращение питания регуляторов воздухом. Выбор регулирующих органов (НО или НЗ), установленных на магистралях, должен производиться так, чтобы регулирующий орган на .магистрали обедненной смеси открылся, а на всех остальных - закрылся.
Регулирование концентрации извлекаемого компонента в насыщенном абсорбенте. Такая цель управления часто ставится при (проведении процесса абсорбции в производстве кислот. В этом случае из газовой смеси необходимо поглощать такое количество компонента, которое бы обеспечило постоянство концентрации Хк.
В качестве основного регулируемого параметра здесь следует брать эту концентрацию (часто используется также плотность продукта), а регулирующее воздействие должно осуществляться применением расхода абсорбента. При этом датчик состава с целью уменьшения запаздывания может быть установлен не на линии насыщенного абсорбента, а в кубе колонны.

Регулирование состава при переменном расходе газовой смеси.

Если расход газовой смеси определяется технологическим режимом предшествующего процесса, то стабилизировать его нельзя, а изменения его являются для абсорбера сильными возмущениями. Для качественного регулирования процесса эти возмущения следует компенсировать до распространения их в объекте. Эту задачу решает регулятор соотношения расходов газовой смеси и абсорбента с коррекцией по концентрации Ук.

Регулирование процесса при постоянной концентрации извлекаемого компонента в газовой смеси.

Если на установку поступает смесь постоянного состава, то исключается одно из сильных возмущающих воздействий. Тогда достаточно вместо регулирования концентрации Ук ограничиться стабилизацией расходов газовой смеси « абсорбента.
Если при этом расход газовой смеси изменяется во времени, устанавливают регулятор соотношения расходов газовой смеси и абсорбента без коррекции по концентрации.

Регулирование процесса изотермической абсорбции.

Некоторые процессы абсорбции протекают с большим выделением тепла, что ухудшает массопередачу. В связи с этим возникает необходимость в отборе части тепла из абсорбера, для чего устанавливают охлаждающие змеевики непосредственно в колонне. Расход хладоносителя, подаваемого в змеевик, должен оп¬ределяться тепловым режимом всего абсорбера. Если змеевики установлены по всей высоте абсорбера, то параметром, характеризующим тепловой режим абсорбера, является температура хладоносителя на выходе из абсорбера. Если же змеевики установлены только в нижней части абсорбера, регулируемой величиной является температура насыщенного абсорбента.

Регулирование перепада давления в колонне.

Некоторые конструкции абсорбционных колонн очень чувствительны к нарушению гидродинамического режима: даже незначительные из¬менения скорости газа в колонне ведут к неустойчивым режимам ее работы. В этих случаях следует стабилизировать не давление, а перепад давления Рт в колонне изменением расхода обедненной газовой смеси.

Схема регулирования состава абсорбента, поступающего в колонну.

Рис. 4.43. Схема регулирования состава абсорбента, поступающего в колонну.

Регулирование процесса при рецикле абсорбента

В некоторых случаях абсорбент, выходящий из куба колонны, лишь частично отбирается с установки, большая же часть его возвращается в. колонну в качестве рецикла. Уровень в колонне при такой технологии регулируют изменением расхода (насыщенного абсорбента, выводимого с установки, а концентрацию Ук изменением расхода свежего абсорбента.
Регулирование состава абсорбента, поступающего в абсорбционную колонну (рис. 4.43). Абсорбент, возвращаемый с участка десорбции, может содержать 'Некоторое количество 'Компонентов газовой смеси, что значительно ухудшает процесс абсорбции. В этом случае необходимо постоянно выводить часть отработанного абсорбента из системы и вводить такое же количество свежего. Это осуществляется в специальной емкости» устанавливаемой между абсорбером и десорбером. При этом состав абсорбента на входе в абсорбер стабилизируется путем изменения расхода свежего абсорбента. Баланс между расходами свежего и отработанного абсорбента, выводимого из системы, поддерживается с помощью регулятора уровня, воздействующего на расход сливаемого абсорбента.
Регулирование по возмущению (использование многоконтурных систем). Если в объект будут поступать возмущения в виде изменения состава и расхода исходной смеси, то расход абсорбента целесообразно изменять в зависимости от этих параметров, т. е. использовать регулирование по возмущению. На схеме показана двухконтурная система, осуществляющая такое регулирование (рис. 4.44).

Благодаря использованию многоконтурных систем можно значительно улучшить качество регулирования процесса и при наличии других возмущений. В качестве вспомогательных па¬раметров выбирают расход абсорбента - при регулировании концентрации извлекаемого компонента в обедненной смеси; расход хладоносителя - при регулировании температур газовой смеси и абсорбента, выводимых из холодильников; расход на¬сыщенного абсорбента - при регулировании уровня.

Регулирование нескольких последовательно установленных абсорбционных колонн. Система автоматического регулирования последовательно установленных абсорберов принципиально не отличается от систем регулирования одного абсорбера. Ко«центрацию Ук регулируют изменением подачи абсорбента, по¬ступающего в первый по ходу абсорбента 'аппарат. Стабилизи¬руются уровни в каждом абсорбере, температуры газовой сме¬си и абсорбента 'на входе в установку и давление в последнем по ходу газа абсорбере. В тех случаях, когда между абсорберами установлены 'промежуточные холодильники для охлаждения абсорбента, необходимо предусмотреть регулирование температуры абсорбента перед абсорберами путем изменения расхода хладоносителей.

   

Типовое решение автоматизации процесса ректификации часть 4

Регулирование процесса отбора промежуточной фракции (рис. 4.35).

При ректификации многокомпонентных смесей ряд компонентов отбирается из промежуточной части колонны в виде пара. Затем пар конденсируется в дефлегматоре.
Конденсат собирается в емкости, откуда возвращается в 'колонну, а частично отбирается в виде одного из целевых продуктов. Для того, чтобы обеспечивался заданный состав промежуточной фракции, на тарелке отбора этой фракции необходимо поддерживать постоянный состав или температуру жидкости (постоянство давления пара над тарелкой поддерживается регулятором давления верхней части колонны). Какой из этих параметров следует брать в качестве регулируемого, определяется требованиями к чистоте промежуточной фракции (на схеме регулируется температура). Наиболее часто регулирующее воздействие осуществляется изменением расхода промежуточной фракции, возвращаемой в колонну. Если к составу верхнего продукта не предъявляются высокие требования, то регулирующие воздействия могут реализоваться изменением расхода флегмы, так как уменьшение расхода флегмы приводит к уменьшению концентрации низкокипящего компонента в целевой промежуточной фракции, и наоборот. Для соблюдения материального баланса по промежуточной фракции уровень в емкости регулируют.

Каскадно-связанное регулирование.

Ректификационные колонны являются объектами управления с большими запаздываниями, (поэтому возмущения успевают существенно изменить режим всей колонны прежде, чем изменится состав целевых продуктов и начнется их компенсация основными регуляторами схемы. Улучшения качества управления процессом можно добиться введением дополнительных контуров регулирования.
Каскадно-связанное регулирование почти всегда применяют при регулировании состава конечных продуктов, что объясняется невысокой надежностью анализаторов состава. В качестве вспомогательного параметра при регулировании состава в верхней части колонны (или на контрольной тарелке) используют расход флегмы (рис. 4.36,а). Если регулируют состав дистиллята, то вспомогательным параметром лучше брать температуру на контрольной тарелке. Можно использовать и трехконтурную систему (рис. 4.36,6), в которой первым вспомогательным кон¬туром будет регулятор температуры, а вторым - регулятор расхода.

Схемы регулировании состава дистиллята с помощью многоконтурных систем регулирования

Рис. 4.36. Схемы регулировании состава дистиллята с помощью многоконтурных систем регулирования: 1 - колонна; 2 - дефлегматор.

При регулировании состава кубового остатка вспомогательными параметрами могут быть расход теплоносителя (либо его давление, если в качестве теплоносителя используют пар), или температура в нижней части колонны, -или же оба параметра.
Когда расход исходной смеси определяется предыдущим технологическим процессом .и сильно изменяется во времени, большой эффект могут дать регуляторы соотношения расходов исходной смеси и флегмы (или исходной смеси и теплоносителя, подаваемого в кипятильник) с коррекцией по составу дистиллята (или остатка). Если же сильным изменениям подвержен и состав исходной смеси, то целесообразно установить вычислительное устройство (ВУ), которое по текущим значениям параметров исходной смеси и с учетом состава целевых продуктов будет рассчитывать значения расходов флегмы и теплоносителя и корректировать работу соответствующих регуляторов (рис. 4.37).
В последнее время находит применение способ автоматиче¬ского изменения точки ввода исходной смеси в колонну. Для этого устанавливают специальное устройство, которое в зависимости от состава переключает линии подачи питания на соответствующие тарелки.
Во всех приведенных выше схемах вследствие недостаточной надежности анализаторов состава целесообразно вводить ограничения на корректирующий сигнал по составу, что устраняет 'Нежелательные последствия, возможные при выходе анализатора из строя.

Схема регулирования соотношения расходов с коррекцией по составу целевых продуктов:

Рис. 4.37. Схема регулирования соотношения расходов с коррекцией по составу целевых продуктов:
1 - колонна; 2 - дефлегматор; 3 - кипятильник.

При регулировании температуры в верхней и нижней частях колонны в качестве вспомогательных параметров обычно берут расходы соответственно флегмы и теплоносителя, 'Подаваемого в кипятильник, при регулировании давления - расход хладоносителя, подаваемого в дефлегматор.
Регулирование процесса в колонне с дефлегматором и конденсатором. Если температуры кипения компонентов смеси близки, конденсация паров, выходящих из колонны, осуществляется раздельно. В дефлегматоре конденсируется только высококипящий компонент, конденсат отделяется в сепараторе от паро-жидкостной смеси и возвращается в колонну. Пары низкокипящего компонента проходят через дефлегматор и затем конденсируются в конденсаторе.

 Схемы регулирования процесса в верхней части колонны с дефлегматором и конденсатором

Рис. 4.38. Схемы регулирования процесса в верхней части колонны с дефлегматором и конденсатором: 1 - колонна; 2 - дефлегматор; 3 - конденсатор; 4-сепаратор.

Для того чтобы в дефлегматоре конденсировался только высококипящий компонент, необходимо поддерживать на определенном уровне температуру парожидкостной смеси, выходящей из дефлегматора. Для этого устанавливают регулятор температуры (рис. 4.38,а), воздействующий на расход хладонооителя, подаваемого в дефлегматор. Давление в колонне стабилизируется в этих случаях путем изменения расхода хладоносителя, поступающего в конденсатор.
В некоторых ректификационных установках дефлегматоры размещают непосредственно на колонне (рис. 4.38, б). Пары, идущие из колонны, конденсируются в такой степени, чтобы обеспечить заданное орошение. При этом расход хладоносителя в дефлегматоре должен соответствовать составу или темпе¬ратуре продукта в верхней части колонны.

Регулирование при использовании экстремальных регулято¬ров и вычислительных машин. 

При управлении процессом ректификации могут ставиться задачи получения продуктов максимально возможной чистоты, достижения максимальной производительности колонны, получения минимальной себестоимости целевого продукта и т. п. В этих случаях возникает необходимость в применении экстремальных регуляторов или управляющих вычислительных машин.
Экстремальный регулятор, например, служит для изменения расхода флегмы с целью получения максимально возможной чистоты дистиллята. На работу такого регулятора накладываются ограничения по расходу флегмы.
Процесс ректификации является одним из самых сложных процессов химической технологии, поэтому применение простых регуляторов, как правило, не исчерпывает всех возможностей увеличения производительности и уменьшения себестоимости продукции. Большой эффект может дать применение управляющих машин, на которые возлагаются следующие функции: вычисление оптимальной нагрузки колонны и установление задания регулятору расхода смеси; вычисление оптимальных соотношений расходов смеси и флегмы, смеси и теплоносителя и установление задания регуляторам расхода флегмы и теплоносителя; корректировка вычисленных соотношений расходов по составу целевого продукта; вычисление номера оптимальной тарелки питания и переключение устройств ввода питания на эту тарелку; вычисление оптимального значения энтальпии исходной смеси и установление задания регулятору расхода теплоносителя, подаваемого в теплообменник для нагревания смеси; переход от одного алгоритма управления к другому при изменении цели управления, при переходе с пускового режима на нормальный и с нормального режима на останов (алгоритм машины включает ограничения, например, по качеству целевых продуктов) и т. д.
Если ректификации подвергается многокомпонентная смесь, управляющая машина рассчитывает номер тарелки для отбора промежуточного продукта и производит переключение устройств отбора на нужную тарелку.

Регулирование периодической ректификации.

Схемы регулирования периодически действующих ректификационных колонн значительно отличаются от приведенных выше. 

Регулирование колонны периодического действия:

Рис. 4.39. Регулирование колонны периодического действия:
а - функциональная схема; б - график определения экономически выгодной продолжи¬тельности процесса; / - стоимость дистиллята; // - производственные затраты; А - но» мент окончания процесса; 1 - колонна; 2 - дефлегматор; 3 - кипятильник.

Кроме введения дополнительного программного устройства, которое осуществляет переключение ректификационной установки с одной операции на другую, видоизменяются следующие узлы регулирования (рис. 4.39,а).
Регулятор состава (температуры) в нижней части колонны заменяется регулятором расхода теплоносителя. Это объясняется тем, что время, необходимое для разделения исходной смеси в таких колоннах, обратно пропорционально скорости подвода тепла в куб колонны. Поэтому расход .теплоносителя целесообразно поддерживать на постоянном, максимально возможном для данных технологических условий, значении.
Регулятор давления в периодических колоннах отсутствует, а регулятор температуры в верхней части колонны снабжается специальным, блоком. Этот блок получает информацию о степени открытия клапана на магистрали флегмы и настраивается на определенное значение, соответствующее минимальному расходу отбираемого дистиллята, ниже которого процесс становится экономически невыгодным, так как произведение себестоимости дистиллята на его количество, уменьшаясь, достигает уровня эксплуатационных затрат (рис. 4.39,6). В этот момент заканчивается отбор дистиллята и начинается следующая операция - отбор остатка.
Регулирование процесса экстрактивной ректификации. Особенностью данного вида ректификации является введение в верхнюю часть колонны растворителя, снижающего парциальное давление одного из компонентов. Растворитель должен подаваться в строгом соотношении с расходом исходной смеси, так как в противном случае происходит или неоправданное увеличение нагрузки колонны или же некачественное разделение компонентов смеси. С целью поддержания соотношения расходов исходной смеси и растворителя устанавливают регулятор соотношения. Остальные узлы регулирования экстракционной колонны и колонны регенерации растворителя аналогичны приведенным выше.

   

Типовое решение автоматизации процесса ректификации часть 3

Регулирование давления в верхней части колонны.

Типовой метод регулирования давления изменением расхода хладоносителя, подаваемого в дефлегматор, связан с большими запаздываниями, поэтому нашли применение и другие способы регулирования.
Если в парах, выходящих из верхней части колонны, содержатся неконденсирующиеся в дефлегматоре компоненты, применяют схему регулирования давления сбросом этих компонентов из сепаратора. Роль сепаратора может играть и флегмовая емкость (рис. 4.34, с). Она обеспечивает запас флегмы, необходимый для стабилизации состава дистиллята при значительных возмущениях. Для поддержания материального баланса в этой емкости следует регулировать уровень изменением расхода дистиллята. Стабилизация уровня, кроме того, обеспечивает постоянное гидростатическое давление перед клапаном на линии флегмы, а следовательно, улучшает качество регулирования состава.
Улучшение качества регулирования давления в верхней части .колонны с отдувкой может быть достигнуто установкой двух исполнительных устройств - на линиях хладоносителя и отдувки. Область работы этих исполнительных .механизмов должна быть различной.
Для регулирования давления используют и метод байпаси-рования (рис. 4.34, б). В этом случае часть паров из колонны («10%) перепускается помимо дефлегматора во флегмовую емкость и конденсируется там. Если запаздывание в системе регулирования давления надо свести к минимальному, дросселируют пары, выходящие из колонны. Оба способа требуют использования крупногабаритных паровых регулирующих органов, что является их недостатком.
В случае полного отсутствия неконденсирующихся паров применяется метод регулирования давления изменением величины поверхности конденсации в дефлегматоре. При уменьшении давления в колонне регулятор давления прикрывает клапан на линии слива конденсата из дефлегматора. При этом уровень конденсата повышается, поверхность конденсации уменьша¬ется, и давление принимает заданное значение.
Если конденсация паров в дефлегматоре осуществляется за счет испарения хладоагентов (аммиака, фреона и т. п.), то улучшение качества регулирования давления может быть достигнуто изменением расхода отводимых из дефлегматора паров хладоагента. Это приводит к быстрому изменению давления и температуры кипения хладоагента и, следовательно, интенсивности испарения. Расход жидкого хладоагента может измеряться или по уровню в дефлегматоре (рис. 4.34,в), или по перегреву паров с помощью терморегулирующего вентиля (см. рис. 4.25).
Разрежение в вакуумных колоннах обычно регулируется изменением подачи воздуха или инертного газа в линию между дефлегматором и паровым (водяным) эжектором (рис. 4.34,г). Необходимо заметить, что, если возможны сильные изменения расхода хладоносителя, подаваемого в дефлегматор, во всех приведенных выше схемах наряду с узлом регулирования давления следует предусмотреть узел стабилизации расхода хладоносителя.

Схемы регулирования давления в верхней части колонны

Рис. 4.34. Схемы регулирования давления в верхней части колонны: 1 - колонна; 2 - дефлегматор; 3 -эжектор; 4 - емкость.

Регулирование давления в кубе колонны. 

При значительном гидравлическом сопротивлении колонны стабилизация давления в верхней части ее не обеспечивает .постоянство давления в нижней. Если в колонне разгоняется смесь, состав которой более чувствителен к изменению давления, чем к изменению температуры, то стабилизируют давление не только в верхней части колонны, но и в нижней части изменением расхода теплоносителя в кипятильник.
При ректификации ряда жидких смесей к гидродинамическому режиму колонны предъявляются повышенные требования: в процессе работы должны быть исключены как режим захлебывания, так и режим уноса капель жидкости паровым потоком. В этих случаях стабилизируют перепад давления по высоте колонны.

Регулирование расхода флегмы.

В отдельных случаях целесообразно не изменять расход флегмы по составу или температуре в верхней части колонны, а стабилизировать его. Предпосылками для такого регулирования служит следующее: отсутствие приборов для непрерывного автоматического определения состава дистиллята, в то время как температура в верхней части колонны при сравнительно больших изменениях состава меняется в очень узких пределах; значительная связь между регуляторами температуры в верхней и нижней частях колонны; наличие в исходной смеси примесей компонента с температурой кипения ниже температуры кипения основного низкокипящего компонента; большие запаздывания в массо- и теплопередаче при большой высоте тарельчатых колонн.
Как правило, стабилизация расхода флегмы связана с пе¬рерасходом теплоносителя, подаваемого в/кипятильник, так как флегма подается заведомо в избытке из расчета компенсации самого сильного возмущения.

Регулирование энтальпии исходной смеси.

При значительных изменениях состава исходной смеси регулирование температуры не дает нужного эффекта, так как заданное регулятору значение температуры не всегда будет соответствовать температуре кипения. В этих случаях целесообразнее поддерживать постоянную энтальпию смеси. Для расчета энтальпии устанавливают вычислительное устройство, на вход которого подаются значе¬ния состава, температуры и давления исходной смеси. Регули¬рующее воздействие вносится путем изменения расхода теплоносителя, подаваемого в теплообменник исходной смеси.

Регулирование температуры паров, возвращаемых из кипятильника в колонну. 

Если основные возмущения связаны с изменением параметров теплоносителя, подаваемого в кипятильник, а не с изменением параметров исходной смеси, то датчик температуры нижней части колонны следует устанавливать на линии пара, движущегося из кипятильника. При этом резко уменьшаются запаздывания в системе.
Перекрестное регулирование температуры и уровня в кубе ректификационной колонны. Такое регулирование применяется при разделении смесей сжиженных газов, а также низкокипящих жидкостей с близкими температурами кипения. При увеличении содержания низкокипящего компонента в кубе колонны температура уменьшается. Регулятор температуры прикрывает «лапан на линии отбора остатка, а связанное с этим увеличение уровня в кубе заставляет регулятор уровня увеличивать подачу пара. Начинается более интенсивное испарение жидкости из куба колонны преимущественно за счет низкокипя¬щего компонента. Температура и уровень возвращаются к заданным значениям. Таким образом, остаток выводится из куба в большом количестве только в том случае, если его состав соответствует заданному. При обычном же способе регулирования температуры и уровня в кубе возможен значительный расход кубовой жидкости с большим содержанием ниакокипящего компонента.

 Схема регулирования процесса ректификации при отборе промежуточной фракцииРис. 4.35. Схема регулирования процесса ректификации при отборе промежуточной фракции: 1 - колонна; 2 - дефлегматор; 3 - емкость.

   

Cтраница 9 из 15

Яндекс.Метрика Rambler's Top100 www.megastock.com Здесь находится аттестат нашего WM идентификатора 000000000000
Проверить аттестат