Технология очистки


Технология очистки

Принцип работы АПН

Принцип работы абсорберов с псевдоожиженной насадкой показан на рис. 1-1. Полый скруббер произвольной формы (в виде цилиндра, конуса, параллелепипеда и др.) разделен поперечными решетками на секции (на рис. 1-1 показана одна секция). В пространство между решетками помещена насадка из элементов той или иной формы. Конструкция нижней решетки, которая называется опорно-распределительной, не должна допускать провала элементов насадки, а верхняя решетка, называемая ограничительной, должна препятствовать выносу насадки за пределы секции. Если в аппарате имеется несколько секций, то часть опорно-распределительных решеток играет роль ограничительных решеток для нижележащих секций.
Если при одновременной подаче в аппарат орошающей жидкости постепенно увеличивать расход газа, то до достижения некоторой скорости газа насадка будет неподвижна (рис. 1-1, а), а затем перейдет в псевдоожиженное состояние (рис. 1-1,6), причем каждому значению скорости газа будет соответствовать определенная высота псевдоожиженного слоя. При дальнейшем увеличении скорости газа в зависимости от высоты начального неподвижного слоя насадка может переместиться («прижаться») к верхней решетке, при этом образуется плотный «плавающий» слой псевдоожиженной насадки (рис. 1-1, в).
Плавающий слой представляет собой разновидность псевдоожиженного орошаемого слоя, в котором прижатая к верхней решетке насадка приходит в движение, обусловленное орошением, под воздействием которой; насадка как бы отжимается от решетки. При этом жидкость, проходит через расширившийся слой насадки, нмшммдействуя с поступающим на очистку газом.

Схема трехфазного псевдоожижения в АПН:

Рис. 1-1. Схема трехфазного псевдоожижения в АПН:
а - скорость газа ниже критической скорости псевдоожижения; б - работа в режиме турбулентно-контактного слоя (обычное псевдоожижение); в - работа в режиме плавающего слоя; 1 - секция абсорбера; 2 - опорно-распределительная решетка; 3 - ограничительная решетка.
Ниже рассмотрен ряд конструкций абсорберов, завивящих от принципа их работы, способов подачи и отвода жидкости и формы рабочей зоны аппарата.

1.2. КОНСТРУКЦИИ АБСОРБЕРОВ С ПСЕВДООЖИЖЕННОЙ НАСАДКОЙ

Абсорбер с псевдоожиженной насадкой плавающего типа является одной из первых разновидностей, нашедшей промышленное применение [3, 9]. На рис. 1-2 схематически показан двухсекционный абсорбер с плавающей насадкой. Аппарат снабжен тремя одинаковыми решетками сравнительно большого свободного сечения, между которыми помещены два слоя насадки. Высота -насадки в каждой секции составляет не менее половины расстояния между соседними решетками. Насадка после некоторого расширения перемещается (прижимается) к верхним решеткам. Однако под воздействием поступающей сверху вниз орошающей жидкости прижатый слой насадки расширяется, образуя плавающий псевдоожиженный слой.
Особенностью созданного таким образом псевдоожиженного орошаемого слоя является то, что в этом случае отсутствуют отрицательные эффекты, характерные для обычных псевдоожиженных слоев с крупными частицами, известные в практике псевдоожижения как поршневой режим» и «газовые пробки». Ни особенность обусловлена равномерностью псевдоожижения по всему слою и как следствие тесным кон-тпктом газа с жидкостью.
Для обеспечения более интенсивного движения на-гадки внутри псевдоожиженного слоя верхние решетки абсорбера устраивают изогнутой формы [23]. Для улавливания брызг в верхней части абсорбера устанавливают брызгоуловитель 4. В качестве насадки для образования плавающего слоя могут быть применены шары диаметром от 7 до 76 мм и плотностью от 20 до 400 кг/м3 [9]. В промышленном исполнении абсорберы с плавающей насадкой имеют диаметр до 5 м и высоту до 12 м [24]. Скорость газа в свободном сечении абсор¬бера составляет примерно 2,5 м/с. Плотность ороше¬ния 25-100 м/ч. Гидравлическое сопротивление одно-секционного абсорбера при плотности орошения 60 м/ч составляет примерно 1,3 кПа.
Абсорберы с псевдоожиженной насадкой плавающего типа рекомендуются для процессов пылеулавливания и

Абсорбер с плавающей насадкой:

Рис. 1-2. Абсорбер с плавающей насадкой:
1 - ограничительная решетка; 2 -шаровая насадка; 3 - ороситель; 4 - брызгоуловитель.
Рис. 1-3. Абсорбер с псевдоожиженной насадкэй:
1 - опорно-распределительные решетки; 2 - шаровая насадка; 3 - ограничительная решетка; 4 - брызгоуловитель.


Турбулентно-контактный абсорбер или абсорбер с псевдоожиженной насадкой.

Первое название принято за рубежом [10], второе - получило распространение в нашей стране [15-18]. Абсорбер с псевдоожиженной на¬садкой (АПН) показан на рис. 1-3. В АПН имеется один или несколько слоев насадки (обычно два или три), расположенных на опорно-распределительных решетках 1. В верхней части абсорбера находится ограничительная решетка 3 с большим живым сечением, которая предотвращает унос насадки с газом из аппарата. Насадка может псевдоожижаться, не прилипая к ограничитель¬ной решетке при изменении скорости газа в широких пределах, что обусловлено большим расстоянием между решетками (высота неподвижной насадки составляет 0,1-0,2 высоты секции). При работе АПН насадка находится не в виде плотного плавающего слоя, а представляет собой сильно разреженный слой, поскольку скорость газа достигает 6 м/с. В качестве насадки могут применяться шары из пластмасс диаметром до 100 мм и плотностью от 10 до 900 кг/м3. Скорость газа в аппарате может изменяться от 1,5 до 9 м/с, плотность орошения от 5 до 200 м/ч [10].

Схема абсорбера АПН фирмы «Исикавадзяма Харима Дзюкогё Кабусики Кайся»

Рис. 1-4. Схема абсорбера АПН фирмы «Исикавадзяма Харима Дзюкогё Кабусики Кайся».

Рис. 1-5. АПН с прямоточной подачей фаз снизу вверх:

а - с подачей жидкости под решетку, б - с подачей жидкости на некотором расстоянии от решетки; в - с подачей жидкости на решетку; 1 - опорно-распределительная решетка; 2 - псевдоожиженная насадка; 3 - брызгоуловитель.

АПН промышленного исполнения имеет следующую характеристику (двухсекционные аппараты): скорость газа в свободном сечении 4,5-5,0 м/ч, расход газа до 200000 м/ч. Гидравлическое сопротивление абсорбера при плотности орошения 40 м/с составляет 1,4 кПа. Аппараты такого типа применяют для абсорбции и тепло¬обмена. В табл. 1-2 и 1-3 приведены основные данные [24] АПН, выпускаемых фирмой «КАВАГ» (ФРГ) и «Исикавадзима Харима Дзюкогё Кабусики Кайся» (Япония).
Абсорбер с «зажатыми» кипящими слоями предложен для процессов тепло- и массообмена, а также пылеочистки. В конструктивном отношении аналогичен аппарату, показанному на рис. 1-2. Абсорбер работает мри расходах газа и жидкости, обеспечивающих заполнение насадкой всего объема секции без образования плотного плавающего псевдоожиженного слоя. По принципу действия абсорбер с зажатыми кипящими слоями соответствует абсорберу, занимающему промежуточное положение между абсорбером с плавающей насадкой [9] и турбулентно-контактным абсорбером [10].

Абсорбер с псевдоожиженной насадкой и прямоточной подачей фаз (снизу вверх). На рис. 1-5 показан аппарат такого типа с подачей жидкости под решетку (рис. 1-5, а) или на некотором расстоянии от нее (рис. 1-5,6). В последнем случае нижнюю часть аппарата выполняют расширяющейся кверху. В аппаратах обоих видов жидкость вместе с газом снизу вверх поступает в псевдоожижеиный слой насадки, в котором они взаимодействуют. Режим работы указанных абсорберов таков, что отработанная жидкость не достигает верха нсевдоожиженного слоя и проваливается через опорно-распределительную решетку. В аппаратах такого типа резко уменьшается брызгоунос, и они могут работать без брызгоуловителей (роль брызгоуловителей играет всрхняя часть псевдоожиженного слоя). Кроме тоге, исключается возможность налипания твердых частиц на нижнюю часть опорно-распределительной решетки. К недостаткам данной конструкции можно отнести слабое перемешивание жидкости, поступающей в слой, поэтому контакт жидкости с газом является недостаточным, а также необходимость интенсивного распыливания жидкости при подаче под решетку, что затруднено при работе с жидкостями, содержащими твердые взвеси.

Абсорбер с псевдоожнженной насадкой и организованной подачей газа:

Рис. 1-6. Абсорбер с псевдоожнженной насадкой и организованной подачей газа:
1 - газораспределительная тарелка с дутьевыми колпачками; 2 - тарелка провального типа; 3 - насадочные тела; 4 - плоско-параллельная насадка.
Рис. 1-7. Абсорбер с псевдоожиженной насадкой фонтанирующего типа:
а - односекционный аппарат; б - аппарат с несколькими вертикальными секциями; 1- подвод газа и жидкости; 2 - опорная решетка; 3 – кольцевой желоб; 4 - брызгоулозитель.

Предложен еще один вид такого аппарата - прямо¬точный абсорбер с псевдоожиженной насадкой [27], из которого вся Жидкость, поступающая в аппарат, выно¬сится и, отделяясь в циклоне, расположенном вне абсорбера, вновь возвращается в абсорбер для повторного использования (рис. 1-5, в).
Абсорбер с псевдоожиженной насадкой и организованной подачей газа под опорно-распределительную решетку [28]. На рис. 1-6 показан абсорбер с провальной тарелкой, на которой для интенсификации массообмена расположены элементы насадки, находящиеся в псевдоожиженном состоянии. Для подачи газа и отвода жидко¬сти под провальной тарелкой установлены дутьевые колпачки. Абсорбер снабжен брызгоуловйтелем в виде плоскопараллельной насадки.

Абсорбер с псевдоожиженной насадкой фонтанирующего типа

В рассмотренных выше видах АПН опорно-распределительные решетки по отношению к жидкости и газу работали как тарелки провального типа, т. е. через одни и те же отверстия поступал газ на абсорбцию и «проваливалась» жидкость. Для обеспечения более полного устойчивого контакта между фазами и уменьшения количества жидкости, подаваемой на оро¬шение аппарата, предложена конструкция АПН [29], в которой часть опорно-распределительной решетки служит только для отвода отработанной жидкости, а через основную часть решетки поступает в псевдоожиженный слой прямотоком газовая и жидкая фазы. Для создания высокой турбулизации потоков часть рабочей зоны вы¬полнена в виде конуса, способствующего образованию -фонтанирующего слоя насадки.
На рис. 1-7, а показана одна из конструкций такого аппарата. Газ и жидкость прямотоком поступают через отверстие 1 в рабочую зону аппарата и благодаря большой линейной скорости (свыше 10 м/с) поднимаются вместе с шарами до ограничительной решетки 2, которая отклоняет поток к боковой поверхности рабочей зоны. Жидкость и шары опускаются вниз, причем шары скатываются к центру опорно-распределительной решетки и снова увлекаются газожидкостным потоком вверх, а отработанная жидкость через кольцевой желоб выхо¬дит из аппарата (при этом часть отработанной жидкости может находиться в циркуляционном контуре, создавая дополнительную поверхность контакта). Для улучшения циркуляции насадки ограничительная решетка 2 выполнена изогнутой и перед ней установлены направляющие пластины. При больших расходах газа в один корпус помещают несколько параллельно работающих аппаратов (рис. 1-7, б].
В аппаратах указанного типа в качестве насадки служат шары диаметром от 30 до 50 мм и массой от 2,5 до 10 г; высота одной секции (камеры) находится в пре¬делах от 0,8 до 2,5 м, скорость газа при входе в псевдоожиженный слой составляет от 10 до 30 м/с. Расход жидкости на 1 м3 перерабатываемого газа меняется в широких пределах: от 0,05 до 10 л/м3. Гидравлическое сопротивление зависит от изменения параметров процесса и составляет от 200 до 3000 Па. К недостаткам таких аппаратов можно отнести значительный рост гидравлического сопротивления с увеличением расхода газа. Так, при изменении расхода газа на 30% гидравлическое сопротивление увеличивается до 70% от первоначальных значений [29]. Аппараты рассмотренной конструкции рекомендуются для осуществления тепло-массообмена и пылеулавливания. Степень улавливания пыли зависит от перепада давления в аппарате. Так, степень улавливания доломитовой пыли (стандартной) при перепаде давления 500 Па составляет 70% и при 2500 Па она достигает 92%.

Конический абсорбер с псевдоожиженной насадкой:

Рис. 1-8. Конический абсорбер с псевдоожиженной насадкой:
а - форсуночный вариант; б - эжекционный вариант; 1-опорная решетка; 2 - шаровая насадка; 3 - брызгоулавливающий слой шаров; 4 – сборник жидкости.
Рис. 1-9. АПН с высокой пропускной способностью по газу:
1 - опорно-распределительная решетка; 2 - наклонная ограничительная ре¬шетка; 3 - перегородка; 4 - шаровая насадка.

Конические абсорберы с псевдоожиженной насадкой (КСШ). На рис. 1-8. изображены два вида конического аппарата с псевдоожиженной насадкой [30]. В этих аппаратах корпус имеет форму перевернутого усеченного конуса, причем в нижнем основании конуса скорость газа должна быть достаточной для псевдоожижения насадки (рекомендуется б-10 м/с). В верхнем основа¬нии конуса скорость газа снижают до 1-2 м/с для обеспечения минимального уноса брызг. Наиболее интенсивное псевдоожижение происходит вблизи нижнего основания, постепенно затухая по высоте, причем верхние малоподвижные слои насадки служат для улавливания образующихся в нижней части брызг. В таких аппаратах по сравнению с абсорберами, имеющими постоян¬ное поперечное сечение, насадка псевдоожижается в более плотный слой, что, по мнению авторов работы [30], ведет к лучшему распределению жидкости в насадке, более тесному контакту газа и жидкости, а также допускает широкое варьирование скорости газа. Статиче¬ская высота слоя составляет 0,5-0,8 м.
В абсорбере, показанном на рис. 1-8, а, орошение жидкостью происходит так же, как и в вышеописанных абсорберах, представленных на рис. 1-2 и 1-3, т. е. жидкость подается сверху и движется вниз, противотоком по отношению к газу. В абсорбере, показанном на рис. 1-8, б, жидкость эжектируется газом из нижнего сборника 4, в котором поддерживается постоянный уровень. Эжекция происходит по оси аппарата, так как здесь скорость газа наибольшая. По периферии, где скорость газа наименьшая, жидкость стекает обратно в сборник 4. Аппараты эжекционного типа более просты в работе, так как они не требуют насосов для подачи орошающей жидкости. Такие аппараты целесообразно применять при температуре газа выше 100°С, так как газы соприкасаются с жидкостью еще в сборнике 4, и насадка предохранена от воздействия высокой температуры. К недостаткам аппаратов эжекционного типа следует отнести трудность эксплуатации при колебаниях расходов жидкости и газа.

АПН с высокой пропускной способностью по газовой фазе [31] показан на рис. 1-9. В рабочей зоне абсорбера происходит циркуляция псевдоожиженной насадки при скоростях газа в свободном сечении аппарата, превышающих скорости в прочих конструкциях, что обеспечивается организацией направленных потоков газа и жидкости. Для этого предусмотрены наклонная ограничительная решетка и сплошная перегородка, разделяются зону контакта на две зоны. В основной зоне, занимающей большую часть аппарата, происходит абсорбция, в другой - циркуляция насадки под эжектирующим воздействием подаваемой в зону вспомогательной жидкости. Скорость газа в такой колонне может достигать 8,6 м/с, плотность орошения 180 м/ч.

Абсорбер со смещенными по оси аппарата коническими слоями псевдоожиженной насадки:

Рис. 1-10. Абсорбер со смещенными по оси аппарата коническими слоями псевдоожиженной насадки:
1 - опорные решетки: 2 - насадка; 3 - брызгоуловитель.
Рис. 1-11. Абсорбер с расположением шаровой насадки на упругих нитях:
1 - опорные решетки; 2 - секция аппарата с горизонтально расположенными нитями; 3 - то же, с вертикальным расположением нитей; 4 - брызгоуловитель

Абсорбер со смещенными по оси аппарата коническими слоями псевдоожиженной насадки. Предложен аппарат [32], в котором для уменьшения брызгоуноса конические слои насадки смещены по оси аппарата так, чтобы брызги из предыдущего слоя не попадали на опорно-распределительную решетку последующего слоя (рис. 1-10).
Другие виды АПН. Для интенсификации массообменных процессов предложен аппарат [33], в котором опорно-распределительная решетка снабжена специальными дутьевыми патрубками для придания насадке вращательного движения.
При колеблющемся расходе газа и жидкости через абсорбер можно использовать абсорбер [19] с опорно-распределительной решеткой и поплавковыми клапанами. Предложена конструкция АПН [34] с опорно-распределительными решетками зигзагообразной формы, выполненными сплошными на выступающих сверху участках и перфорированными на остальной части. По мнению авторов изобретения, это ведет к повышению эффективности работы и уменьшению гидравлического сопротивления.
Для увеличения пропускной способности АПН и уменьшения гидравлического сопротивления предложено шаровую насадку располагать на упругих нитях [35] в продольном и поперечном сечениях аппарата (рис. 1-11).
Предложен абсорбер с внутренним контуром орошения, не требующий насосов для осуществления рециркуляции [36] - инерционно-турбулентный аппарат с подвижной насадкой (ИТПН). ИТПН сочетает в себе две зоны: одну, по принципу действия аналогичную скрубберу Дойля [I, с. 540], и другую, представляющую собой обычный слой насадки в АПН, орошаемый жидкостью, эжектированной из первой зоны.

 

Современное развитие аппаратов АПН

Современное развитие промышленности наряду с резким ростом объема производства сопровождается также возрастанием выбросов в атмосферу промышленных отходящих газов. Вновь строящиеся заводы создаются, как правило, на основе мощных единичных технологических систем и высокоэффективных аппаратов. Указанные системы включают в себя очистку отходящих промышленных газов, являющуюся составной частью многих производств. Очистка отходящих промышленных газов должна обеспечить утилизацию ценных компонентов, находящихся в газе, и охрану окружающей среды от за¬грязнения. Как правило, на очистку поступает большое количество газов (десятки и сотни тысяч кубических метров в час) и при этом требуется высокая степень извлечения компонентов. Для абсорбции вредных компонентов из отходящих газов сравнительно небольших объемов (до 100000 м3/ч) используется значительное число конструкций абсорберов [1, 2]. Однако при переработке больших количеств газа (100000 м3/ч и выше) выбор абсорбционной аппаратуры ограничен.
При переработке больших количеств газа применяют преимущественно насадочные (с неподвижной насадкой) и полые распыливающие абсорберы. В последнее время находят применение барботажные (тарельчатые) и скоростные прямоточные распиливающие абсорберы (абсорберы Вентури), а также абсорберы с псевдоожиженной насадкой.
Абсорберы с псевдоожижспной насадкой стали широко применять в промышленности, в частности в производстве минеральных удобрений и в цветной металлургии. Эти абсорберы могут работать при больших нагрузках по газу (скорость газа на полное поперечное сечение абсорбера порядка 2,5 - 5 м/с), характеризуются высокой эффективностью и обладают тем важным свойством, что движение насадки практически исключает возможность забивания осадками рабочей зоны. Последнее обстоятельство особенно ценно при обработке запыленных газов или в тех случаях, когда а процессе абсорбции образуется твердая фаза.
В этих абсорберах интенсификация процессов массообмена и «самоочищаемость» от твердых осадков рабочей зоны обеспечивается псевдоожиженной («кипящей») насадкой. Насадочные тела (шары, кольца и др.) ииддгржмиаются во взвешенном (псевдоожиженном) состоянии током газа, движущимся снизу вверх. Орошающая насадку жидкость в зависимости от режима работы аппарата образует пленку, покрывающую поверхности, насадочных тел, либо, при более интенсивных режимах, входит и состав барботажного газо-жидкостного слоя (газ распределен в жидкости в виде пузырь-кон, струй и т. п.), либо присутствует в виде капель и струй, распределенных в газе. Для создания псевдоожижениого слоя насадки в рабочей зоне абсорбера применяют различные способы. Имеется два основных принципиально отличных способа работы абсорберов с псевдоожиженной насадкой:
1) насадка, прижатая к верхней решетке подъемной силой газового потока, расширяется под воздействием жидкостного орошения, образуя при этом подвижный плавающий слой под ограничительной решеткой. Такой линарат назван абсорбером с плавающей насадкой;
2) насадка расширяется под действием газа, образуя псевдоожиженный слой, в котором происходит взаимо¬действие между жидкостью и газом. Дальнейшее развитие и распространение получили аппараты этого типа, которые были названы [10] турбулентно контактными абсорберами. Однако в литературе имеются и другие названия: аппарат с подвижной насадкой, сокращенно ПН [11]; аппараты с подвижной шаровой насадкой, сокращенно ПШН [12]; аппараты со взвешенной насадкой, сокращенно ВН [13]; абсорбер с плавающей насадкой [3, 14]; абсорбер с псевдоожиженной насадкой [15 - 18]; аппарат с псевдоожиженным слоем твердой инертной орошаемой насадки, сокращенно АПСТИН [19]; контактный аппарат с трехфазным турбулентным псевдоожиженным слоем [20]; пенный аппарат со взвешенной насадкой, сокращенно ПАВН [7]; пенный аппарат с подвижной насадкой - сокращенно ПАПН [37].
Исследования последних лет показали, что процессы, протекающие в аппаратах рассматриваемого типа, удовлетворительно описываются на основе закономерностей обычного двухфазного псевдоожижения с учетом влияния движения жидкой фазы через псевдоожиженный слой. Поэтому нет необходимости в применении приведенных выше различных названий од¬ного и того же аппарата, что иногда затрудняет использование результатов различных исследований. Нам представляется целесообразным применять название, впервые предложенное в работе [15] - абсорберы с псев-доожиженной насадкой (АПН) - как наиболее отвечающее физической сущности процесса.
Механизм работы абсорберов обоих типов в исследовании [22] рассматривается по аналогии с механизмом работы насадочных колонн со стационарной насадкой в условиях до режима подвисания (турбулентно-контактный абсорбер - ТСА) и захлебывания (абсорбер с плавающей насадкой «РВС»); в этой же работе предложено оба типа называть абсорбером с псевдоожиженной насадкой.

   

Способы каталитического восстановления

Способы каталитического восстановления подразделяют на высокотемпературные и низкотем­пературные.

Высокотемпературные способы без утилизации теп­ла горячих отходящих газов крайне дороги.

Низкотемпературные на­ходят применение даже без утилизации тепла.
В таблице 1.7 представлены данные работы установок каталити­ческой газоочистки на химических заводах США. Анализ данных показывает, что действующие установки каталитической очистки га­зов от оксидов азота гарантированно обеспечивают современные са­нитарные нормы газоочистки. «Пионерами» каталитической очистки газов от оксидов азота в нашей стране были ученые ГИАП. Ими была разработана схема производства HNO3 под давлением с каталитиче­ской очисткой газовых выбросов и утилизацией энергии горячих от­ходящих газов на турбине. Достигнутая ими концентрация оксидов азота в газовом выбросе составляла менее 0,01 % об. Как уже отмеча­лось, авторы этой установки были награждены Государственной пре­мией СССР.
В качестве катализаторов для высокотемпературных способов из­вестно применение следующих металлов: платины, кобальта, никеля, палладия и родия, двухслойных металлических ката­лизаторов, например, верхний по ходу газа - палладиевый, нижний - никелевый и др. Хотя катализатор можно периодически регенериро­вать восстановлением в условиях избытка топлива или при использо­вании аммиака в качестве газа-восстановителя, потери катализа­тора очень велики, а срок службы их составляет около одного года.
Например, потери палладия составляют 0,05 на 1 т кислоты. Стои­мость 1кг палладиевого катализатора составляет примерно 400 руб.(в ценах 1980г.). Изучению восстановления оксидов азота без дорогих катализаторов посвящен ряд работ, в которых эксперимен­тально показана практическая возможность полного восстановления оксидов азота углеродом. Этот способ связан с большим расходом то­плива. Применение в качестве катализатора дешевых сплавов, содер­жащих никель, хром, медь, цинк, оксиды некоторых металлов [14], работающих при температуре 550 - 600°С, показывает худшие резуль­таты по сравнению с платиной и металлами, перечисленными в рабо­тах. В качестве носителей катализаторов используют: оксид алюминия (А12О3), керамику, гофрированные металлические хро-моникелевые ленты . Содержание оксидов азота в очищенном газе зависит не только от вида катализатора, но и от вида применяемого топливного газа. В качестве топливного газа используют: водород, окись углерода, метан, природный газ, коксовый газ, пары керосина и др. В очищенных газах по этой причине содержатся водород, метан, водяные пары, углекислота, азот, небольшое количе­ство аммиака, оксид углерода, диоксид углерода. Некоторый избыток горячего газа, который обычно требуется в реальных условиях, при­водит к повышению содержания оксида углерода в очищенных газах. Однако при использовании в качестве горючего метаносодержащего газа (при соотношении СН4/О2 до 1,7 в зависимости от вида катализа­тора) концентрация оксида углерода в очищенном газе не превышает 0,3% об., что при высоте трубы 100м в 5 раз меньше допустимой нор­мы.

Недостатком высокотемпературных способов каталитической очи­стки является то, что они дороги и чувствительны к малейшему по­вышению концентрации кислорода в отходящих газах. Удельные ка­питальные затраты на каталитическую газоочистку составляют 30-40% от затрат основного производства азотной кислоты. При увели­чении содержания кислорода в выбросном газе, поступающем на ка­талитическую газоочистку, резко повышается температура газов в ре­акторе. Так, при сжигании метана температура повышается на 130-140°С на каждый 1% дополнительного кислорода, а при сжигании во­дорода - соответственно на 150-160°С. В связи с этим, если содержа­ние кислорода в газах велико, процесс необходимо вести в несколько стадий очистки и охлаждения газа [1].
Следует отметить, что состав отходящих газов в процессе этерифи-кации целлюлозы существенно отличается от условий производства азотной кислоты. Так, концентрация кислорода в газах в несколько раз больше и достигает 20%, а давление практически равно атмосферно­му. В этих условиях применение высокотемпературных каталитиче­ских способов практически невозможно, ибо допустимое содержание кислорода, например, для сжигания метана составляет всего 3,2% об.[15]. Неизвестно можно ли применять каталитическую газоочистку от оксидов азота в условиях залповых газовых выбросов, когда концен­трация оксидов азота увеличивается в десятки раз и в отходящих газах резко повышается концентрация смеси паров и тумана азотной кисло­ты.
Трудность рекуперации тепла, высокая концентрация кислорода в отходящих газах и значительные расходы дорогих катализаторов де­лают высокотемпературную каталитическую очистку газов неэконо­мичной в условиях абсорбционных систем, работающих при атмо­сферном давлении, и тем более неэкономичной в условиях очистки отходящих газов в процессе этерификации целлюлозы.
В этой связи в процессе этерификации целлюлозы из каталитиче­ских способов газоочистки перспективными являются лишь низко­температурные способы, одним из которых является восстановление оксидов азота в присутствии аммиака на катализаторе АВК-10. Расход аммиака в каталитических процессах газоочистки обычно пре­вышает стехиометрическое значение на 30 - 40%. Кроме АВК-10 в химической промышленности известно применение других катализа­торов: алюмопалладиевые, алюмованадиевые , на основе ок­сидов металлов и др.
Из заводов отрасли впервые применили каталитическую очистку газов на Дзержинском ФГУП им. Я.М. Свердлова. При этом очистке подвергались отходящие газы процесса денитрации отработанных ки­слот при расходе газов 5 тыс.м3/ч. Для внедрения современного спо­соба газоочистки на других заводах отрасли организацией ФГУП «ГНИЙ «Кристалл» г. Дзержинска был разработан соответствующий директивный технологический процесс.
Для широкого распространения современного способа каталитиче­ской газоочистки в литературе мало данных о механизме и кинетике процесса, нет оптимизации и методик расчета промышленных аппара­тов. Известные катализаторы дороги, они не могут дать заметного эф­фекта в условиях залповых выбросов и нет эффективных способов утилизации тепла горячих отходящих газов после реактора. При больших расходах газов каталитическая газоочистка является самым дорогим способом газоочистки. Расход отходящих газов на заводах производства нитратов целлюлозы достигает 60 тыс. м3/ч. Кроме того, внедрение каталитической очистки газов сопровождается выбросом в атмосферу вторичных продуктов в виде остатков аммиака и продуктов сгорания топлива. В этой связи актуальными являются задачи по лик­видации недостатков одного из самых перспективных способов очи­стки отходящих газов и разработке методики инженерного расчета реактора. Одновременно необходимо найти пути интенсификации процесса абсорбции оксидов азота для того, чтобы оксидов азота на каталитическую очистку поступало как можно меньше, а главное не больше, чем это потребует соответствующая оптимизация. Следует отметить, что на заводах отрасли имеются оксиды азота и высокой концентрации. Они образуются в процессах денитрации отработанных кислот и концентрирования азотной кислоты. Поэтому интенсифика­ция процесса абсорбции оксидов азота для заводов отрасли так же не­обходима, как и интенсификация процесса каталитической очистки газов.

   

Сравнительная эффективность очистки аппаратов от оксидов азота

До 1949 года в СССР разработкой способов очистки отходящих га­зов от оксидов азота занимались только ГИАП и ГНИИОГАЗ (г.Москва), в 1953 году - пять НИИ, в 1956 году -девять институтов и восемь предприятий. С 1964 года начали организовывать специальные всесоюзные конференции, на которых вопросу газоочистки от окси­дов азота уделялось особое внимание. В результате интенсивной ра­боты ГИАП для заводов производства азотной кислоты проблема очи­стки отходящих газов от оксидов азота решена практически полно­стью. Результаты работы отмечены Государственной премией СССР. В основе газоочистки лежит способ селективного восстановления ок­сидов азота с утилизацией энергии горячих отходящих газов на тур­бине [11]. На заводах отрасли для очистки отходящих газов от ок­сидов азота самым распространенным способом газоочистки является абсорбция газов водой в насадочной колонне. Размеры насадочных колонн достигают по высоте 20м и имеют диаметр до 4,8м. Увеличе­ние габаритов колонны и рост числа колонн на практике не дает за­метного эффекта. На сегодня остается спорным механизм абсорбции оксидов азота низкой концентрации, имеются разногласия в кине­тике абсорбции, отсутствуют методики расчета абсорберов для улова оксидов азота низкой концентрации водой с учетом присутствия в газе паров и тумана азотной кислоты.
Все это в совокупности приводит к значительным ошибкам в рас­четах и низкой эффективности действующих аппаратов.
Рассмотрим основные причины низкой эффективности действую­щих аппаратов очистки отходящих газов от оксидов азота в процессах этерификации целлюлозы. По оксидам азота отходящие газы перед газоочисткой содержат около 0,1-0,2 г/м3 NO, 0,5-2 г/м3 NO2. Концен­трация кислорода в газах достигает 20%. Обычно для очистки отхо­дящих газов в насадочных колоннах применяются три ступени кон­такта фаз. При этом газ иногда распределяют в батарею из 6 и 12 на­садочных колонн, но число ступеней контакта фаз оставляют обычно равным трем. Схема трехступенчатой системы насадочных колонн показана на рисунке 1.2. В первой по ходу газа башне поддерживается концентрация азотной кислоты в жидкости 50% масс. Такая концен­трация кислоты в жидкости легко обеспечивается из-за присутствия в газе паров и тумана азотной кислоты. Анализ условий равновесия ок­сидов азота над азотной кислотой показывает, что оксиды азота низкой концентрации такой кислотой абсорбироваться практически не будут. Поэтому огромная насадочная башня, спроектированная на аб­сорбцию оксидов азота, совсем их не абсорбирует. Кроме того, ог­ромный окислительный объем башни для окисления NO в NO2 оказы­вается ненужным, так как газ приходит в первую башню уже окис­ленным до NO2 на 90%. В специфичных условиях производства пер­вая насадочная башня может абсорбировать только пары азотной ки­слоты. Анализ кинетики процесса абсорбции паров азотной кислоты показывает, что насадочная колонна для этой цели является морально устаревшим аппаратом. Кроме того, работа башни сопровождается большим брызгоуносом кислоты, что противоречит требованиям га­зоочистки.
В этой связи применение насадочной колонны для улова оксидов азота на первой ступени является необоснованным. Следует отметить, что и последующие ступени улавливают оксиды азота всего на 30-50%. Поэтому Фридлендер (ГНИИХП) разработал пленочный абсор­бер. Автор этого абсорбера взял за образец один из аппаратов США. Он пренебрег уловом оксидов азота, отказался от больших окисли­тельных объемов и создал полый многоступенчатый аппарат в виде трубы с циркуляцией жидкости насосом на каждой ступени и проти­вотоком между ступенями. Циркуляция жидкости из ступени в сту­пень осуществлялась через промежуточные емкости. Пленочный аб­сорбер имел диаметр 1,8м, длину 27м и высоту трубы выброса газов в атмосферу 10-22м. Абсорбер располагался на открытой площадке наклонно под углом 2-5° вдоль здания на высоте около 6м. В здании устанавливались семь промежуточных кислотных емкостей, семь ра­бочих и семь запасных кислотных насосов. Схема пленочного аб­сорбера представлена на рисунке 1.3. Аппарат имел минимальное гидрав­лическое сопротивление и много лет работал в промышленности. От­сутствие в пленочном абсорбере элементов для улова брызг кислоты между ступенями контакта фаз приводило к интенсивному продоль­ному перемешиванию состава кислоты между ступенями. Надежного многоступенчатого контакта фаз не происходило, хотя число ступеней было увеличено с трех до семи. Не было элементов улова тумана кислоты. Работа аппарата сопровождалась брызгоуносом кислоты и вы­бросом не только оксидов азота, но и тумана кислоты.
Анализ равновесной упругости оксидов азота над растворами сла­бой азотной кислоты показывает, что очистка газов от оксидов азота водными растворами азотной кислоты кажется возможной. Реальная концентрация азотной кислоты в жидкости в лучших дейст­вующих системах газоочистки, состоящих из насадочных колонн, из­меняется (от последней по ходу газа башни к первой) от 10 до 55%. В третьей ступени системы газоочистки равновесная упругость окси­дов азота над 10-20% - ной кислотой практически равна нулю. Послед­нее свидетельствует о том, что есть кажущаяся движущая сила про­цесса. Однако на практике в аппаратах абсорбции образуется кроме азотной еще и азотистая кислота. Хотя концентрация последней в жидкости мала и не превышает 0,03%, ее влияние оказывается суще­ственным. Этот факт в современных методиках расчета не учитывает­ся.
Для того чтобы сформулировать научно-обоснованные пути ин­тенсификации процесса очистки отходящих газов от оксидов азота, проанализируем более подробно причины низкой эффективности аб­сорберов.
Диоксид азота (NO2) является одним из основных компонентов смеси оксидов азота, поступающей на газоочистку. Концентрация NO2 в газе в 7-14 раз больше концентрации NO. Диоксид азота находится в газовой фазе в равновесии с тетраоксидом азота по реакции:

2NO2 =N2O4.

   

Снижение газовых выбросов за счет внедрения новых аппаратов

Следует отметить, что внедрение современных технологических процессов и аппаратов в производстве специального продукта не все­гда приводило к уменьшению газовых выбросов, а чаще, наоборот. Например, к увеличению кислотных газовых выбросов привело внед­рение высокопроизводительных круговых аппаратов для непре­рывного вытеснения отработанных кислот, новых аппаратов денит­рации отработанных кислот и концентрирования азотной кислоты в колоннах Степанова [5], скоростных аппаратов для концентриро­вания серной кислоты в трубах Вентури [6]. Следует отметить, что сложившаяся интенсификация основных технологических процессов приводит к тому, что затраты на очистку отходящих газов резко воз­растают. Поэтому в перспективе необходимо стремиться не только очистить отходящие газы, но и сократить газовый выброс от основ­ных технологических аппаратов.
Основными источниками кислотных газовых выбросов являются процессы этерификации целлюлозы и вытеснения отработанных ки­слот после этерификации. Процесс этерификации в общем виде опи­сывается реакцией:

[С6Н7О2(ОН) ] + nНNO С6Н7О2(NO2) ] +3nH2O (1.1)

Механизм и кинетика прямой и обратной реакции до сих пор явля­ется объектом научных исследований [7]. На практике процесс эте­рификации осуществляют обычно тройной смесью HNO3 + H2SO4+H2O в аппаратах периодического действия. В настоящее время имеются первые результаты испытания непрерывной этерификации по проекту Казанского ОКТБ. Вытеснение отработанных кислот по­сле этерификации осуществляют методом многоступенчатой про­мывки водой. При получении высокоазотного продукта для уменьшения потерь азота в продукте между стадией этерификации и стади­ей вытеснения отработанных кислот применяют стадию отжима отра­ботанной кислоты в центрифугах. Время этерификации в дейст­вующих нитраторах достигает 40 мин. Однако известно, что при уве­личении концентрации азотной кислоты это время можно резко со­кратить.
Для интенсификации процесса вытеснения отработанных кислот из продукта в отрасли нашел применение круговой аппарат конструкции Г.Л. Штукатера, который подобен круговому австрийскому экстрак­тору. Время вытеснения отработанных кислот в круговом аппара­те достигает 45 мин. Суммарное время вытеснения кислот в центри­фуге и аппарате с ложным дном достигает трех часов. Следует отме­тить, что современный аппарат конструкции Г.Л. Штукатера пока не исчерпал своих возможностей как по производительности, так и по области применения. Однако без интенсивного
отжима отработанных кислот после этерификации этот аппарат не согласуется с экологией и его применение приводит к увеличению потерь кислот в окружающую среду. Значительными являются и залповые газовые выбросы. Из­вестно, что любые изменения в процессе этерификации целлюлозы существенно отражаются на всех смежных технологических про­цессах: регенерации отработанных кислот, стабилизации продукта, очистке
отходящих газов и сточных вод. Поэтому процесс этери­фикации целлюлозы является узловым как для решения проблемы интенсификации производства,
так и для решения проблемы охраны окружающей среды.
Следует отметить, что прошло уже полтора века с тех пор, как Браконо [8] впервые получил нитроцеллюлозу при действии азотной кислоты на клетчатку, а Пелуз получил нитроцеллюлозу при дей­ствии азотной кислоты на бумагу. Однако более 100 лет в мировой практике этерификацию целлюлозы осуществляют только смесью азотной и серной кислот. Например, в России производство пиро­ксилина началось в 1892 году. С тех пор в производстве нитратов целлюлозы практически вся серная кислота, применяемая как водоотнимающее средство, выбрасывается в окружающую среду. Неиз­бежные потери кислоты объясняются тем, что серная кислота при этерификации адсорбируется и относительно прочно удерживается волокнами нитратов целлюлозы.
Последнее отрицательно отражается на стойкости продукта. Поэто­му Абель [9] предложил измельчать нитраты целлюлозы для извле­чения кислот из внутренних труднодоступных частей волокна. Затем извлеченные кислоты нейтрализуются содовым раствором и сбрасы­ваются в сточные воды. Без измельчения и нейтрализации конечного продукта его стойкость не достигается [10]. Представ­ляют интерес перспективные безсернокислотные малоотходные про­цессы этерификации, но они пока находятся на стадии исследований. Серная кислота остается единственным промышленным водоотнимающим средством. Поэтому доля потерь кислот в сточные воды на данный момент велика и составляет более половины от общих потерь кислот в окружающую среду. Уменьшить потери кислот в сточные воды можно только путем принципиального изменения процесса эте­рификации целлюлозы с последующей реконструкцией всей сово­купности смежных технологических процессов. Однако полная рекон­струкция всей совокупности основных и смежных технологических процессов производства нитратов целлюлозы является самостоятель­ной крупной научно-технической проблемой, имеющей важное народ­нохозяйственное значение.
Над разработкой теоретических основ и новых идей для решения проблемы безсернокислотной этерификации успешно работали одно­временно несколько организаций, объединенных в стране целевыми комплексными программами: "Язык", "Яр", "Ядро". Однако внед­рений в производство пока нет. Поэтому мы исключили из данного этапа работы описание новой технологии непрерывной этерификации целлюлозы и сосредоточили основное внимание на разработке основ комплексного решения проблемы сокращения кислотных газовых вы­бросов для действующих производств.
Анализ равновесной упругости паров серной кислоты над тройной смесью HNO +H SO +H O в условиях этерификации целлюлозы пока­зывает, что паров серной кислоты в отходящих газах практически не должно быть. Мала и концентрация паров воды, так как серная кис­лота является водоотнимающим средством. Присутствие в газовой фазе смеси паров воды и оксидов азота приводит к образованию в газе смеси азотной и азотистой кислот по реакциям:

N2O3+H2O 2HNO2 ,

N2O4+H2O HNO3+HNO

В условиях этерификации целлюлозы доля паров азотной кислоты обычно в 5-10 раз больше доли оксидов азота. Пары азотной кислоты легкорастворимый в воде газ. Растворимость оксидов азота сущест­венно зависит от их концентрации и состава. Оксиды азота находятся преимущественно в виде NO2.
При перенасыщении газовой фазы парами кислоты последние бы­стро превращаются в туман. Изменение температуры и концентрации паров азотной кислоты существенно влияет на дисперсный состав ту­мана азотной кислоты. Зимой доля тумана превышает долю паров азотной кислоты, а летом (в жаркие дни) доля тумана азотной кислоты значительно меньше доли ее паров. На заводах отрасли для очистки от­ходящих газов в процессах этерификации целлюлозы применяют два типа абсорбционных установок: систему насадочных колонн (рисунок 1.2) или пленочный многоступенчатый абсорбер (рисунок 1.3). Технико-экономические показатели представлены в таблице 1.3.

установка очистки отходящих газов процесса этерификации целлюлозы в трех насадочных башнях

Рисунок 1.2 - Схема наиболее распространенной промышленной установки очистки отходящих газов процесса этерификации целлюлозы в трех насадочных башнях

Схема пленочного многоступенчатого абсорбера

Рисунок 1.3 - Схема пленочного многоступенчатого абсорбера, созданно­го в сороковые годы специально для очистки отходящих газов процесса этерификации целлюлозы по образцу аппаратов США: I - корпус; 2 - каплеуловитель; 3 - вентилятор; 4 - промежуточные емкости с насосом

Таблица 1.3 - Технико-экономические показатели действующих систем очистки отходящих газов в процессах этерификации целлюлозы

Наименование аппаратов

Стоимость, тыс.руб. (в ценах 1980 г.)

Энерго­затраты, кВт/ч

Суммарная концентрация токсичных веществ в газо­вом выбросе в пересчете на HNO3, г/м3

Система насадочных колонн (3-12 шт.)

300-600

171-306

0,8

Пленочный абсорбер

60-150

116-205

1,5

   

Cтраница 6 из 7

Яндекс.Метрика Rambler's Top100 www.megastock.com Здесь находится аттестат нашего WM идентификатора 000000000000
Проверить аттестат