Технология очистки

Расчет отстойников

Задача 4.1

Исходные данные. Суточный расход городских сточных вод Q = 36500 м3/сут; максимальный секундный расход qmаx = 0,65 м3/с; содержание взвешенных веществ в поступающей воде Сеn = 210 мг/л, содержание взвешенных веществ в осветленной воде должно быть Сех =100 мг/л.
Задание. Рассчитать первичные горизонтальные отстойники.

Скачать решение задачи 4.1

Задача 4.2

Исходные данные. Суточный расход городских сточных вод Q = 6000 м3/сут; максимальный секундный расход qmаx = 0,12 м3/с; содержание взвешенных веществ в поступающей воде Сеn = 240 мг/л, содержание взвешенных веществ в осветленной воде должно быть Сех =150 мг/л.
Задание. Рассчитать первичные вертикальные отстойники.

Скачать решение задачи 4.2

Задача 4.3

Исходные данные. Суточный расход городских сточных вод составляет Q = 12000 м3/сут; максимальный часовой расход qmаx=790 м3/ч; содержание взвешенных веществ в поступающей воде Сеn = 280 мг/л, содержание взвешенных веществ в осветленной воде должно быть Сех = 140 мг/л. Задание. Рассчитать первичные вертикальные отстойники с нисходяще-восходящим потоком.

Скачать решение задачи 4.3

Задача 4.4

Исходные данные. Суточный расход городских сточных вод составляет Q=89000 м3/сут; максимальный секундный расход qmаx = 1,51 м3/с; содержание взвешенных веществ в поступающей воде Сеn = 310 мг/л, содержание взвешенных веществ в осветленной воде должно быть Сех =150 мг/л. Задание. Рассчитать первичные радиальные отстойники.

Скачать решение задачи 4.4

Задача 4.5

Исходные данные. Суточный расход городских сточных вод составляет Q= 39000 м3/сут; максимальный секундный расход qmаx = 0,68 м3/с; содержание взвешенных веществ в поступающей воде Сеn = 360 мг/л, содержание взвешенных веществ в осветленной воде должно быть Сех =150 мг/л. Задание. Рассчитать первичные отстойники с вращающимся сборно-распределительным устройством.

Скачать решение задачи 4.5

Задача 4.6

Исходные данные. Суточный расход городских сточных вод составляет Q= 8900 м3/сут; максимальный часовой расход qmаx = 590 м3/ч; содержание взвешенных веществ в поступающей воде Сеn = 255 мг/л, содержание взвешенных веществ в осветленной воде должно быть Сех =150 мг/л. Задание. Рассчитать тонкослойные отстойники с перекрестной схемой работы (рис. 4.15).

Расчетная схема тонкослойного отстойника с перекрестной схемой работы

Рис. 4.15. Расчетная схема тонкослойного отстойника с перекрестной схемой работы

Скачать решение задачи 4.6

Задача 4.7

Исходные данные. Суточный расход городских сточных вод составляет Q= 25 600 м3/сут; максимальный часовой расход qmаx = 1650 м3/ч; содержание взвешенных веществ в поступающей воде Сеn = 220 мг/л, содержание взвешенных веществ в осветленной воде должно быть Сех =130 мг/л. Задание. Рассчитать тонкослойные отстойники с противоточной схемой работы (рис. 4.16).

Расчетная схема тонкослойного отстойника с противоточной схемой работы № 1: а - для удаления тяжелых примесей; б - для удаления легких примесей (масло, нефтепродукты и т.д.)

Рис. 4.16. Расчетная схема тонкослойного отстойника с противоточной схемой работы № 1: а - для удаления тяжелых примесей; б - для удаления легких примесей (масло, нефтепродукты и т.д.)

Скачать решение задачи 4.7

Задача 4.8

Исходные данные. Суточный расход городских сточных вод составляет Q= 15 200 м /сут; максимальный часовой расход qmаx = 990 м3/ч; содержание взвешенных веществ в поступающей воде Сеn = 310 мг/л, содержание взвешенных веществ в осветленной воде должно быть Сех =150 мг/л.
Задание. Рассчитать тонкослойные отстойники с противоточной схемой работы (рис. 4.17).

Расчетная схема тонкослойного отстойника с противоточной схемой работы

Рис. 4.17. Расчетная схема тонкослойного отстойника с противоточной схемой работы № 2: а - для удаления тяжелых примесей; б - для удаления легких примесей (масло, нефтепродукты и т.д.)

Скачать решение задачи 4.8

Задача 4.9

Исходные данные. Существующие первичные горизонтальные отстойники на городской очистной станции канализации (ОСК) имеют 5 отделений с размерами каждого: высота Н = 4,6 м, длина Lset = 70 м и ширина Вset = 6 м. Вместимость приямка одного отделения для сбора осадка составляет Wmvd= 42,88м3.
Существующий суточный расход сточных вод Q' = 36 500 м3/сут; максимальный часовой расход qmаx = 2340 м3/ч. Запланировано увеличение пропускной способности ОСК до Q = 46 000 м3/сут (qmаx = 2950 м3/ч) при неизменной эффективности осветления Э = 52%.
Содержание взвешенных веществ в поступающей воде составляет Сеn = 210 мг/л, содержание взвешенных веществ в осветленной воде Сех =100 мг/л. Расчетная гидравлическая крупность взвешенных веществ в сточной воде составляет u0 = 0,62 мм/с.
Задание. Рассчитать тонкослойные блоки с противоточной схемой работы для реконструкции первичных горизонтальных отстойников.

Скачать решение задачи 4.9

Задача 4.10

Исходные данные. Существующие первичные вертикальные отстойники на городской очистной станции канализации (ОСК) имеют 6 отделений диаметром Dset = 9 м, высотой цилиндрической части Нц = 4,2 м. Глубина отстойной части составляет Н''set = 3,5 м.
Существующий суточный расход сточных вод Q= 11 200 м3/сут; максимальный часовой расход qmаx = 870 м3/ч. Запланировано повышение эффективности отстаивания с существующего значения Э' = 30% до Э = 43% при неизменной пропускной способности.
Содержание взвешенных веществ в поступающей воде составляет Сеn = 210мг/л, содержание взвешенных веществ в осветленной воде должно быть Сех =120 мг/л.
Задание. Рассчитать тонкослойные блоки с противоточной схемой работы для реконструкции первичных вертикальных отстойников.

Скачать решение задачи 4.10

Задача 4.11

Исходные данные. Существующие на городской очистной станции канализации (ОСК) первичные радиальные отстойники имеют 4 отделения диаметром Dset = 30 м, глубиной отстойной части Н'set= 3,1 м.
Существующий суточный расход сточных вод Q' = 90 000 м3/сут; максимальный часовой расход q'mах = 5800 м3/ч. Запланировано повышение пропускной способности ОСК до Q=120 000 м3/сут (qmаx = 7600 м3/ч) при неизменной эффективности отстаивания Э = 45%.
Содержание взвешенных веществ в поступающей воде составляет Сеn = 270 мг/л, содержание взвешенных веществ в осветленной воде Сех =150 мг/л. Расчетная гидравлическая крупность взвешенных веществ в сточной воде составляет u0 = 1,52 мм/с.
Задание. Рассчитать тонкослойные блоки с противоточной схемой работы для реконструкции первичных радиальных отстойников.

Скачать решение задачи 4.11

Задача 4.12

Исходные данные. На очистной станции канализации города запроектированы аэротенки с дозой активного ила ai = 2,5 г/л и иловым индексом Ji = 85 см3/г.
Суточный расход городских сточных вод Q = 36 500 м3/сут; максимальный часовой расход qmаx = 2340 м3/ч; требуемая концентрация ила (вынос) в осветленной воде после вторичного отстаивания должна быть аt = 15 мг/л.
Задание. Рассчитать вторичные горизонтальные отстойники.

Скачать решение задачи 4.12

Задача 4.13

Исходные данные. На очистной станции канализации города запроектированы высоконагружаемые биофильтры с коэффициентом рециркуляции Кгес = 0,19.
Суточный расход городских сточных вод Q = 6 000 м3/сут; максимальный секундный расход qw = 0,12 м3/с; максимальный часовой расход qw = 430 м3/ч, поступающей на биофильтры сточной воды Lcn = 205 мг/л. Количество БПКполн в сточной воде на одного жителя в сутки составляет а = 75 г/(чел-сут).
Задание. Рассчитать вторичные вертикальные отстойники.

Скачать решение задачи 4.13

Задача 4.14

Исходные данные. Такие же, что в за 4.13.
Задание. Рассчитать вторичные вертикальные отстойники с нисходяще восходящим потоком.

Скачать решение задачи 4.14

Задача 4.15

Исходные данные. На городской станции аэрации запроектированы аэротенки с дозой активного ила ai = 3 г/л и иловым индексом Ji=110 см3/г.
Суточный расход городских сточных вод составляет Q = 89 000 м3/сут; максимальный часовой расход qw = 5440 м3/ч; требуемая концентрация ила (вынос) в осветленной воде после вторичного отстаивания должна быть аi = 20 мг/л.
Задание. Рассчитать вторичные радиальные отстойники.

Скачать решение задачи 4.15

 

Расчет песколовки

Задача 3.1

Исходные данные. Суточный расход сточной воды Q = 75000 м3/сут; максимальный секундный расход qmах = 1,41 м3/с; минимальный секундный расход qmin=0,72 м3/с; норма водоотведения составляет а = 250 л/(сут-чел).Задание. Рассчитать горизонтальные песколовки с прямолинейным движением воды.

Скачать решение задачи 3.1

Задача 3.2

Исходные данные. Суточный расход сточной воды Q = 25000 м3/сут; максимальный секундный расход qmаx = 0,45 м3/с; норма водоотведения составляет а = 170 л/(сут-чел).
Задание. Рассчитать горизонтальные песколовки с круговым движением воды.

Скачать решение задачи 3.2

Задача 3.3

Исходные данные. Суточный расход сточной воды Q=14000 м3/сут; максимальный секундный расход qmаx = 0,28 м3/с; норма водоотведения составляет а = 190 л/(сут-чел).
Задание. Рассчитать тангенциальные песколовки.

Скачать решение задачи 3.3

Задача 3.4

Исходные данные. Суточный расход сточной воды Q = 8500 м3/сут; максимальный секундный расход qmаx=0,16 м3/с; норма водоотведения составляет а = 210 л/(сут-чел).
Задание. Рассчитать вертикальные песколовки.

Скачать решение задачи 3.4

Задача 3.5

Исходные данные. Суточный расход сточной воды равен Q=157 000 м /сут; максимальный секундный расход qmаx = 2,65 м /с; норма водоотведения составляет а = 250 л/(сут-чел).
Задание. Рассчитать аэрируемые песколовки.

Скачать решение задачи 3.5

Задача 3.6

Исходные данные. Суточный расход сточной воды на очистной станции составляет Q=11000 м3/сут; тип песколовок - горизонтальные; норма водоотведения равна а = 140 л/(сут-чел). Задание. Рассчитать песковые площадки для обезвоживания песка из песколовок.

Скачать решение задачи 3.6

Задача 3.7

Исходные данные. Суточный расход сточной воды на очистной станции составляет Q = 58000 м3/сут; тип песколовок - аэрируемые; норма водоотведения равна а = 190 л/(сут-чел).
Задание. Рассчитать песковые бункеры для обезвоживания песка из песколовок.

Скачать решение задачи 3.7

   

Расчет решеток

Задача 2.1

Исходные данные. Суточный расход сточной воды Q = 90000 м /сут; максимальный секундный расход qmах= 1,65 м /с; норма водоотведения составляет а = 180 л/(сут-чел).
Задание. Подобрать решетки с механической очисткой.

Скачать решение задачи 2.1

Задача 2.2

Исходные данные. Суточный расход сточной воды Q = 5000 м3/сут; максимальный секундный расход qmах = 98 л/с; норма водоотведения составляет а = 150 л/(сут-чел).
Задание. Подобрать решетки с ручной очисткой.

Скачать решение задачи 2.2

Задача 2.3

Исходные данные. Суточный расход сточной воды Q= 155000 м3/сут; максимальный часовой расход равен qmаx.q = 9370 м3/ч.
Задание. Подобрать решетки-дробилки.

Скачать решение задачи 2.3

   

Примеры решения задач по абсорбции

Пример 1-1. Объемная концентрация NНз в воздухе С = 0,12 кг/м3 при температуре Т = 300 К и давлении Р = 1,5 • 102 кПа. Выразить содержание NH3 в других величнах, приведенных в табл. 1-1.
Решение. Мольные массы: Мк = 17 (для МNН3), Мг = 29 (для воздуха). Среднюю мольную массу газовой смеси определяем по уравнению (1,4)
Скачать решение задачи(22.95 Кб) скачиваний411 раз(а)

Пример 1-2. Концентрация поташного раствора после поглощения Н2S рав С(K2CO3) = 200 кг/м3; СН2S = 15 кг/м3 (без учета реакции между компонентами). Растворитель - вода; плотность раствора рж = 1200 кг/м3. Выразить состав раствора мольных долях.
Скачать решение задачи(20.99 Кб) скачиваний330 раз(а)

Пример 1-3. Определить константы фазового равновесия трх, тух, тс и трс для системы аммиак - вода - воздух при температуре 20 °С, давлении Р = 0,98 • 102 кПа и концентрации раствора х = 0,0957, если парциальное давление ЫН3 над раствором при равновесии р= 0,0928 • 102 кПа.
Скачать решение задачи(19.49 Кб) скачиваний270 раз(а)

Пример 1-4. Вычислить константу фазового равновесия для этана при температуре 20 °С и давлении 20 • 102 кПа, если его критическая температура tkp = 32,1 °С, критиче¬ское давление Ркр = 49 • 102 кПа, давление насыщенного пара Р = 39 • 102 кПа (при 20 °С), плотность жидкого этаиа рж = 350 кг/м3 (при 20 °С и 39 • 102 кПа).
Скачать решение задачи(38.29 Кб) скачиваний278 раз(а)

Пример 1-5. Определить константу фазового равновесия тс при растворении в растворе Nа2СО3 концентрацией С = 1,5 кмоль/м3 при 20 °С.
Скачать решение задачи(16.77 Кб) скачиваний283 раз(а)

Пример 1-6. При водной абсорбции SО2 из смеси с воздухом для некоторых условий найдено: bР = 0,00025 кмоль/(м2 • с • бар) и bж = 0,00015 м/с. Общее давление Р = 1,2 • 105 Па, температура Г = 300 К. Определить значения коэффициентов в газовой и жидкой фазе
Скачать решение задачи(23.31 Кб) скачиваний285 раз(а)

Пример 3-6. Определить N для случая поглощения NНз водой упрощенным методом при следующих условиях: G0 = 410 кмоль/ч; L0 = 888 кмоль/ч; Y1 = 0,0526; Y2 = 0,0027; Х2 = 0, v2 = 20 С (противоток). Общее давление Р = 0,1 МПа.
Скачать решение задачи(51.05 Кб) скачиваний288 раз(а)

Пример 3-7. Определить максимальную концентрацию соляной кислоты, которая может быть получена при адиабатической абсорбции хлористого водорода водой в противоточном аппарате, если содержание НСl в поступающем газе 10 объемн.% (ya1 = 0,1), содержание водяных паров 9,2 объемн.% (Уb1 = 0,092), температура газа ^, = Н5°С, общее давление 0,1 МПа. Отношение Кв/Кa = 1,14; Kв/Ка = 29,7 кДж/(кмоль • К); rв + ф = 42000 кДж/кмоль; Ф = 45000 кДж/кмоль.
Скачать решение задачи(27.38 Кб) скачиваний262 раз(а)

Пример 3-8. Рассчитать противоточный абсорбер для поглощения СО2 из газовой смеси водным раствором моноэтаноламина (МЭА) под давлением Р = 0,25 МПа при температуре 30°С. Содержание СО2 в поступающей смеси 25 объемн.%. Требуемая степень извлечения ф = 0,95. Расход газа (на входе) 32000 м3/ч (при 0°С и 0,1 МПа). Расход жидкости L = 760 м3/ч. Содержание МЭА в растворе 2,5 кмоль/м3. Степень карбонизации (мольное отношение СО2: МЭА) в поступающем растворе f2 = 0,15.
При расчете принять следующие значения физико-химических констант и коэффициентов массоотдачи: коэффициент диффузии СO2 в жидкой фазе ОА = 1,4-•10~9 м2/с; константа скорости реакции r = 10200 м3/(кмоль-с); константа фазового равновесия тс = 1,65; объемный коэффициент массоотдачи в газовой фазе bг = = 0,2 с~'; коэффициент массоотдачи в жидкой фазе bж = 0,00022 м/с; удельная поверхность контакта а = 140 м-1
Скачать решение задачи(120.69 Кб) скачиваний308 раз(а)

Пример 3-9. Рассчитать противоточиый абсорбер для поглощения NН3 из газовой смеси раствором серной кислоты. Концентрация гШ3 в газовой смеси на входе СГ1 = 0,002 кмоль/м3, на выходе СГ2 = 0,00004 кмоль/м3. Концентрация Н2SО4 (свободной) в поступающем поглотителе В2 = 0,6 кмоль/м3, в уходящем В] = 0,5 кмоль/м3. Коэффициент массотдачи в газовой фазе Р™ = 0,5 с-1, в жидкой фазе bж = 0,0005 с-1. Константа фазового равновесия тс = 0,00075. Расход газовой смеси G = 3 м3/с.
Скачать решение задачи(45.45 Кб) скачиваний305 раз(а)

Пример 3-10. Рассчитать десорбцию NН3 из водного раствора глухим паром при следующих условиях: x1 = 0,02; х2 = 0,002; у1 = 0,9 (массовые доли). Температура поступающей жидкости 80 °С. Общее давление 0,1 МПа. Количество поступающей жидкости L1= 10000 кг/ч.
Скачать решение задачи(73.55 Кб) скачиваний257 раз(а)

Пример 4-1 Рассчитать насадочнын абсорбер для поглощения ССЬ водой из газа состава (в объемн.%): СО2 = 30,2; СО = 4; Н2 = 48; N2 = 17,8. Расход газа (на входе) G1=905 кмоль/ч (20000 м3/ч при 0°С и 0,1 МПа); давление Р = 1,6 МПа (16 бар). На орошение подается вода (х2 = 0) с температурой 25°С. Требуемая степень извлечения СО2 составляет 95%.
Скачать решение задачи(182.92 Кб) скачиваний277 раз(а)

Пример 4-2 Рассчитать трубчатый пленочный абсорбер с водяным охлаждением для поглощения NН3 водой. Расход газа на входе 0,66 м3/с (при 0°С и 0,1 МПа); температура 40°С; давление 0,3 МПа. Содержание NН3 в поступающем газе 40 объемн.%; температура воды, поступающей на абсорбцию, 20 °С; температура охлаждающей воды 10 °С. Требуемая степень извлечения NH3 из газа 99,5% при получении аммиачной воды состава х1 = 0,105 (10 вес.% NH3).
Скачать решение задачи(292.99 Кб) скачиваний245 раз(а)

Пример 4-3 Рассчитать барботажный абсорбер с провальными (решетчатыми) тарелками для поглощения SО3. Количество поступающего газа 0,2516 кмоль/с (20000 м3/ч при 0 °С н 0,1 МПа). Содержание SО3 в поступающем газе у1 = 0,07 (Y1 = 0,0753). На орошение подается 98,3%-ная Н2SO4; выходящая жидкость - олеум с содержанием 20% свободного SO3- Температура газа на входе 100 °С; температура поступающей кислоты 50 °С; температура охлаждающей воды 25 °С. Требуемая степень извлечения SО3 99,9%.
Скачать решение задачи(240.76 Кб) скачиваний259 раз(а)

Пример 4-4 Рассчитать насадочный абсорбер (насадка - кольца размером 50 мм внавал) для поглощения НСl водой. Количество поступающего газа 0,1512 кмоль/с (12000 м3/ч при 0°С и 0,1 МПа), его температура t1 = 70 С, давление 0,1 МПа. Содержание НСl в поступающем газе уa1 = 0,24 (Уa1 = 0,316). Исходный газ не содержит водяных паров (г/в! = У в\ = 0). Концентрация получаемой соляной кислоты х1 = 0,161 (28 вес.%). Степень извлечения НС1 из газа 95%. Объемные коэффициенты массопе-редачи: при поглощении хлористого водорода КА = 0,0438 кмоль/(мэ-с); при испарении воды Кв = 0,05 кмоль/(м3-с). Объемный коэффициент теплоотдачи от газа к жидкости а= 1,3 кВт/(м3-К). Температура поступающей на абсорбцию воды t2 = 50 °С
Скачать решение задачи(176.56 Кб) скачиваний269 раз(а)

Пример 4-5 Рассчитать барботажный абсорбер для поглощения углеводородов из смеси с инертным газом. Удельный расход поглотителя (масло) l = Lk/G = 1,2. Давление в абсорбере 0,4 МПа (4 бар), температура 40°С. Изменением температуры в абсорбере можно пренебречь. При расчете тарелок может быть принята схема полного перемешивания жидкости на тарелке. Содержание компонентов в поступающем поглотителе равно нулю. Содержание компонентов в поступающем газе, а также значения констант фазового равновесия т и числа единиц переноса на тарелку N составляют:
Компонент Y1 т N
А (пропан) 0,2 3 0,495
В (бутан) 0,18 0,9 0,9
С (изопентан) 0,14 0,43 1,575
Необходимая степень извлечения ключевого компонента (бутан) ф=0,92.
Скачать решение задачи(218.68 Кб) скачиваний278 раз(а)

   

Схемы с однократным использованием поглотителя (без десорбции компонента)

Эти схемы применяют в тех случаях, когда в результате абсорбции получается готовый продукт или полупродукт и поэтому регенерация поглотителя не требуется. В качестве примера можно назвать получение минеральных кислот (абсорбция SО3 в производстве серной кислоты, абсорбция НСl с получением соляной кислоты, абсорбция окислов азота в производстве азотной кислоты и др.), солей (абсорбция окислов азота щелочными растворами с получением нитрит-нитратных щелоков, абсорбция СО2 раствором NН3 и NaCl в производстве соды и т. д.) и других веществ (абсорбция NH3 водой для получения аммиачной воды и т. п.).
Схемы с однократным использованием поглотителя находят применение также при очистке газов от вредных примесей, когда поглотитель дешев, а извлеченный компонент не представляет ценности или получается в незначительных количествах. В этом случае целесообразнее сбрасывать использованный поглотитель как отход или применять его для каких-либо других целей, чем проводить дорогостоящий процесс десорбции. Примером может служить санитарная очистка газов, содержащих малые количества фтористых соединений (SiF4 и НF), путем промывки их водой, причем образующийся слабый раствор Н2SНF6 или НF после нейтрализации сбрасывают в канализацию. К рассматривае¬мым схемам можно отнести также каталитический метод извлечения SО2 из газов низкой концентрации; в этом методе раствор содержит катализатор (например, пиролюзит), в присутствии которого происходит окисление SО2 и образование серной кислоты [1].
В некоторых случаях (например, при абсорбции СО2 раствором NаОН) в результате абсорбции образуется химическое соединение, которое не разлагается путем десорбции. В этом случае, если полученное соединение нецелесообразно использовать, раствор после абсорбции сбрасывают в канализацию или химически регенерируют поглотитель.
При применении установок с однократным использованием поглоти¬теля последний обычно поступает на абсорбцию без примеси раство¬ренного компонента (иногда, например при абсорбции СО2 раствором ЫаОН, в поступающем растворе содержится некоторое количество СО3 в виде Nа2СО3, поскольку карбонат натрия обычно присутствует в едком натре).
Если абсорбцию производят для получения готового продукта, конечное содержание компонента в поглотителе определяется требованиями, предъявляемыми к продукту. Расход поглотителя при этом зависит от содержания компонента в газе и степени его извлечения, максимум которой стремятся достигнуть. Таким образом, расход поглотителя в данном случае нельзя выбрать произвольно, и обычно, особенно при невысокой концентрации компонента в газе, он не бывает большим, т. е. объемное отношение газ : жидкость велико. Это ограничивает возможные типы аппаратов или ведет к необходимости работать с циркуляцией поглотителя.
В случаях, если в результате абсорбции не получают готового продукта, обычно также стремятся достигнуть высокой концентрации компонента в поглотителе, так как при этом упрощается дальнейшая переработка раствора, например выпаривание его при получении солей. Иногда концентрация компонента в поглотителе ограничивается техно¬логическими условиями, например выпадением кристаллов.
Если процесс абсорбции сопровождается значительным выделением тепла, его отводят одним из способов, описанных выше (см. с. 213). Наиболее целесообразно отводить тепло путем адиабатической абсорбции (при летучем поглотителе) или внутренних охлаждающих элементов. Отвод тепла адиабатической абсорбцией летучим поглотителем широко используется при абсорбции НСl в производстве соляной кислоты по методу Гаспаряна.
В качестве примера абсорбционных установок с однократным использованием поглотителя рассмотрим схему абсорбции SО3 (в сочетании с осушкой газа) в производстве серной кислоты контактным способом (рис. VIII-!). Охлажденный очищенный газ, содержащий 6-7 объемн. % SO2, поступает в сушильную башню 3, орошаемую 95- 96%-ной кислотой, и далее направляется на контактирование, где SО2 окисляется в SО3.

Схема абсорбции SО3 в производстве контактной серной кислоты:

Рис. VIII-1. Схема абсорбции SО3 в производстве контактной серной кислоты:
1 - олеумный абсорбер; 2 - моногидратный абсорбер; 3 - сушильная башня; 4 - сборники; 5 - насосы; 6 - холодильники; С - концентратомер; H - уровнемер; Q - расходомер.
После контактирования и охлаждения газы проходят последовательно через олеумный и моногидратный абсорберы 1 и 2. Сушильная башня и абсорберы выполнены в виде насадочных колонн, орошаемых кислотами соответствующей концентрации. Кислоты стекают в сборники 4, из которых насосами 5 через холодильники 6 возвращаются на орошение тех же башен. Количество рециркулирующих кислот настолько велико, что в башне не происходит сколько-нибудь значительного изменения их концентрации и большого повышения температуры. Олеумный абсорбер орошается олеумом, содержащим 20% свободного SО3, а моногидратный абсорбер - моногидратом (98%-ная Н2SО4). Над моногидратом давление SО3 практически равно нулю, что обеспечивает полноту улавливания SО3. Требуемые концентрации циркулирующих кислот поддерживаются путем передачи части сушильной кислоты в цикл моногидратного абсорбера, а части 98%-ной Н2SО4 в циклы сушильной башни и олеумного абсорбера.
На рис. VIII-2 показана аналогичная схема с применением барботажных аппаратов (с провальными тарелками) и внутреннего отвода тепла. Вместо олеумного и моногидратного абсорберов установлен один абсорбер 2, орошаемый 98%-ной Н2SО4 и дающий продукционный олеум (20% свободного 5Оз). Из сушильной башни выходит Н2SО4 концентрацией 93%. Моногидрат получается в аппарате 5 смешением части олеума с 93%-ной Н2SО4. По этой схеме значительно уменьшается поверхность холодильников, так как большая часть тепла отводится при помощи внутренних холодильников (помещенных в барботажный слой) с коэффициентом теплопередачи около 1000 Вт/(м2-К) [вместо 200- 300 Вт/(м2-К) для выносных холодильников]. Кроме того, резко сокращается количество перекачиваемых кислот и уменьшаются габариты оборудования.

Схема абсорбции SО3 с применением барботажных аппаратов:

Рис. VIII-2. Схема абсорбции SО3 с применением барботажных аппаратов:
1 - сушильная башня; 2 - абсорбер; 3 - холодильники; 4 - погружной насос; 5 - сместитель олеума и купоросного масла; С - концентратомер; H - уровнемер; Q - расходомер.

   

Cтраница 2 из 7

Яндекс.Метрика Rambler's Top100 www.megastock.com Здесь находится аттестат нашего WM идентификатора 000000000000
Проверить аттестат