Задачи ПАХТ разные

Задачи 6

Задача 6-1

Воздух подогревается в трубном пространстве одноходового кожухотрубчатого теплообменника с 10 до 90 °С при среднем абсолютном давлении 820 мм рт. ст. Расход воздуха, считая при нормальных условиях, составляет 8000 м3/ч. В теплообменнике 241 труб диаметром 38x2 мм. Материал труб – углеродистая сталь. Нагрев производится насыщенным водяным паром под давлением 2 атм. Определить поверхность теплообмена, полагая отношение длины к трубы к диаметру больше 50.

Скачать решение задачи 6-1

Задача 6-2

В выпарном аппарате подвергается упариванию под атмосферным давлением 2,7 т/ч 7% водного раствора. Температура кипения раствора в аппарате 103°С, начальная температура разбавленного раствора 95°С. Избыточное давление греющего пара 2 ат. Поверхность теплообмена в аппарате 52 м2, коэффициент теплопередачи 1000 Вт/(м2 К). Тепловые потери аппарата в окружающую среду составляют 110000 Вт. Определить конечную концентрацию упаренного раствора и расход греющего пара (кг/ч) при влажности его 5%.

Скачать решение задачи 6-2

Задача 6-3

В теоретическую сушилку, работающую под атмосферным давлением 745 мм.рт.ст, поступает 70 кг/ч материала с содержанием влаги 40%. Конечное влагосодержание материала 5%. Воздух с относительной влажностью 70% и температурой 15°С подогревается в калорифере. Воздух, покидающий сушилку, имеет парциальное давление 27 мм.рт.ст и относительную влажность 60%. Необходимо определить: 1) Температуру воздуха после калорифера, 2) Расход воздуха в кг/ч, 3) поверхность нагрева калорифера при коэффициенте теплопередачи в нем 30 Вт/(м2•К). Греющий пар имеет избыточное давление 2 ат.

Скачать решение задачи 6-3

Задача 6-4

В противоточном абсорбере при атмосферном давлении при температуре 20°С поглощается из парогазовой смеси 300 кг/ч пара бензола. Начальное содержание пара бензола в парогазовой смеси 4% (об). Степень извлечения бензола 0,85. Жидкий поглотитель, поступающий в абсорбер после регенерации, содержит 0,0015 кмоль бензола/кмоль поглотителя. Фиктивная скорость газа в абсорбера 0,9 м/с. Уравнения линии равновесия Y=0,2X. Где Y и Х выражены соответственно в кмоль бензола/кмоль инертного газа и кмоль бензола/кмоль поглотителя. Коэффициент избытка поглотителя 1,4. Определить диаметр абсорбера и концентрацию бензола в поглотителе, выходящем из абсорбера кмоль бензола/кмоль поглотителя

Скачать решение задачи 6-4

Задача 6-5

В ректификационной колонне, работающей под атмосферном давлении разделяется смесь хлороформ – бензол. Тангенс угла наклона рабочей линии верхней части колонны 0,715. Поверхность нагрева в кубе 20м2, коэффициент теплопередачи 1046,7 Вт/(м2•К). Избыточное давление греющего пара 0,2 атм. Температура кипения кубового остатка как для чистого бензола. Определить количество дистиллята (кмоль/ч) и расход греющего пара (кг/ч). Верхний продукт принять за чистый хлороформ

Скачать решение задачи 6-5

 

Теплообменники. Контрольная I. варианты 1-24

Российский химико-технологический университет
им. Д. И. Менделеева.
Кафедра процессов и аппаратов химической технологии.

Российский химико-технологический университет им. Д. И. Менделеева                               Кафедра процессов и аппаратов химической технологии

Вариант 1

Насыщенный пар толуола в количестве 2000 кг/ч конденсируется при давлении 760 мм. рт. ст. в кожухотрубном вертикальном конденсаторе. Жидкий толуол не переохлаждается. Тепло конденсации отводится водой, нагревающейся от 20 до 40°С. Вода движется в стальных трубах (марка стали Ст.3) диаметром 33х3 мм со скоростью 0,35 м/с. Коэффициент теплопередачи от пара к воде составляет 640 Вт/(м2•К). Потерей тепла в окружающую среду и термическими сопротивлениями загрязнений пренебречь. Определить: 1) поверхность теплопередачи в аппарате; 2) расход охлаждающей воды; 3) коэффициенты теплоотдачи; 4) составить схему аппарата.

Скачать решение задачи РХТУ вариант 1

Вариант 2

На наружной поверхности змеевика, изготовленного из стальной (марка стали Ст.3) трубы диаметром 28х2 мм и длиной 5 м, конденсируется при давлении 760 мм рт. ст. насыщенный пар изопропилового спирта. Диаметр витка змеевика составляет 0,3 м. В трубе змеевика протекает метанол, температура которого увеличивается от 12 до 29°С. Коэффициент теплопередачи от конденсирующегося пара к метанолу равен 600 Вт/(м2•К). Потерями тепла и термическими сопротивлениями загрязнений пренебречь. Определить: 1) количество конденсирующегося изопропанола и охлаждающего метанола; 2) коэффициенты теплоотдачи; 3) составить схему аппарата.

Скачать решение задачи РХТУ вариант 2

Вариант 3

На наружной поверхности змеевика, изготовленного из стальной (марка стали Ст.3) трубы диаметром 26х3 мм, конденсируется при давлении 760 мм рт. ст. 60 кг/ч насыщенного пара изопропилового спирта. Диаметр витка змеевика составляет 0,23 м. Отвод тепла осуществляется водой, нагревающейся от 10 до 22°С. Коэффициент теплоотдачи со стороны пара составляет 980 Вт/(м2•К). Термическим сопротивлением загрязнений стенок пренебречь. Определить: 1) длину трубы, из которой изготовлен змеевик; 2) составить схему аппарата. 

Скачать решение задачи РХТУ вариант 3

Вариант 4

В стальном змеевике (марка стали Ст.3) подогревается четырёххлористый углерод от 20°С до температуры кипения при атмосферном давлении. Диаметр трубы змеевика 56?3 мм, а диаметр витка змеевика 500 мм. Нагрев осуществляется конденсирующимся на внешней поверхности трубы насыщенным водяным паром. Давление пара 1,6 ата, его расход 16,5 кг/ч. Коэффициент теплоотдачи от пара к стенке равен 12900 Вт/(м2•К). Потери тепла и термические сопротивления загрязнений можно не учитывать. Определить: 1) количество нагреваемой жидкости (кг/ч); 2) поверхность теплопередачи змеевика; 3) составить схему аппарата.

Скачать решение задачи РХТУ вариант 4

Вариант 5.

По кольцевому зазору двухтрубного холодильника протекает 30%-ный раствор НCl со скоростью 1,2 м/с, охлаждаясь от 52 до 29°С. Охлаждающая вода движется противотоком, нагреваясь от 13 до 29°С. Коэффициент теплоотдачи от стенки к воде равен 5830 Вт/(м2•К). Холодильник изготовлен из стальных (Х18Н10Т) незагрязнённых труб диаметром 62х3 мм и 36х3 мм. Потери тепла можно не учитывать. Определить: 1) расход кислоты (кг/ч) и охлаждающей воды (м3/ч); 2) поверхность теплопередачи; 3) составить схему аппарата.

Вариант 6

По внутренней трубе противоточного двухтрубного теплообменника длиной 4 м, состоящего из стальных (Х18Н10Т) труб диаметром 52х2 мм и 33х2,5 мм, протекает вода, нагреваясь от 24 до 32°С. По внешней – уксусная кислота, охлаждаясь от 91 до 83°С. Расход уксусной кислоты 4,82 т/ч. Коэффициент теплоотдачи от стенки к воде равен 4880 Вт/(м2•К). Потерями тепла и загрязнениями можно пренебречь. Определить: 1) расход охлаждающей воды (м3/ч); 2) запас поверхности в теплообменнике (%); 3) составить схему аппарата.

Вариант 7

В трубе змеевика охлаждается 750 кг/ч 100%-ной уксусной кислоты от температуры её конденсации при 760 мм рт. ст до 36°С. Поверхность теплопередачи змеевика 5 м2, диаметр стальной (Х18Н10Т) трубы змеевика 52х3 мм, диаметр витка 450 мм. Охлаждение производится водой, которая нагревается от 15 до 27°С. Потери тепла и загрязнения стенок можно не учитывать. Определить: 1) коэффициенты теплоотдачи, предварительно найдя коэффициент теплопередачи; 2) расход охлаждающей воды (кг/ч); 3) составить схему аппарата.

Вариант 8

В двухтрубном холодильнике по кольцевому зазору между стальными (Ст.3) трубами диаметром 59х3,5 мм и 28х2,5 мм протекает изопропиловый спирт со скоростью 0,76 м/с. Температура спирта на входе в аппарат 81°С, на выходе 29°С. Охлаждающая вода движущаяся противотоком изменяет свою температуру от 15 до 23°С. Коэффициент теплоотдачи от поверхности стенки к воде равен 6340 Вт/(м2•К). Потерями тепла и термическими сопротивлениями загрязнений пренебречь. Определить: 1) расход охлаждаемого спирта (кг/ч) и воды (м3/ч); 2) поверхность теплопередачи; 3) составить схему аппарата.

Скачать решение задачи РХТУ вариант 8

Вариант 9

В стальном (Ст.3) двухтрубном теплообменнике по внутренней трубе диаметром 33х3 мм протекает хлорбензол со скоростью 0,8 м/с. Температура хлорбензола на входе в аппарат 24°С, на выходе 68°С. По зазору кольцевого сечения противотоком протекает горячая вода с температурой на входе 90°С, на выходе 46°С. Коэффициент теплоотдачи от воды к поверхности внутренней трубы равен 1870 Вт/(м2•К). Потерей тепла в окружающее пространство и термическими сопротивлениями загрязнений пренебречь. Определить: 1) расход нагреваемой жидкости (кг/ч) и греющей воды (м3/ч); 2) поверхность теплопередачи; 3) составить схему аппарата.

Скачать решение задачи РХТУ вариант 9

Вариант 10

В змеевиковом подогревателе по стальной (марка стали Х18Н10Т) трубе диаметром 33х3 мм течёт хлороформ со скоростью 0,6 м/с, нагреваясь от 18 до 86°С. С внешней стороны змеевик обогревается насыщенным водяным паром под давлением 3 ата. Коэффициент теплоотдачи от пара к трубе змеевика равен 9300 Вт/(м2•К). Диаметр витков змеевика 270 мм. Потерями тепла и загрязнениями стенок можно пренебречь. Определить: 1) количество нагреваемой жидкости и расход пара (кг/ч); 2) поверхность теплопередачи; 3) составить схему аппарата. 

Скачать решение задачи РХТУ вариант 10

Вариант 11

В кольцевом зазоре двухтрубного теплообменника, состоящего из стальных труб (марка стали Х18Н10Т) диаметром 57х3,5 мм и 25х2 мм, охлаждается 1350 кг/ч ацетона от 56 до 44°С. Охлаждающая вода движется противотоком и нагревается от 22 до 28°С. Коэффициент теплоотдачи от стенки трубы к воде составляет 4950 Вт/(м2•К). Термическими сопротивлениями загрязнений и потерями тепла пренебречь. Определить: 1) расход охлаждающей воды (м3/ч); 2) длину трубы теплообменника; 3) составить схему аппарата.

Скачать решение задачи РХТУ вариант 11

Вариант 12

В вертикальном кожухотрубном конденсаторе на внешней поверхность стальных (Ст.3) труб диаметром 33х3 мм конденсируется насыщенный водяной пар при давлении 1,5 ата. Конденсат удаляется при температуре конденсации. Коэффициент теплоотдачи от пара к трубам составляет 9300 Вт/(м2•К). По трубам протекает охлаждающая вода со скоростью 0,4 м/с. Число труб в конденсаторе 19. Температура воды на входе 15°С, на выходе 45°С. Потерями тепла пренебречь. Определить: 1) расход охлаждающей воды (м3/ч) и греющего пара (кг/ч); 2) поверхность теплопередачи; 3) составить схему аппарата.

Скачать решение задачи РХТУ вариант 12

Вариант 13

В межтрубном пространстве кожухотрубного теплообменника конденсируется при 760 мм рт. ст. 1730 кг/ч насыщенного пара этанола. Теплообменник выполнен из стальных труб диаметром 26х3 мм, число которых 61. Охлаждающая вода нагревается от 25 до 35°С. Коэффициент теплоотдачи от пара к поверхности стенок труб 1390 Вт/(м2•К). Стенки труб считать незагрязнёнными, потерями тепла пренебречь. Определить: 1) расход охлаждающей воды; 2) высоту труб аппарата; 3) составить схему аппарата.

Скачать решение задачи РХТУ вариант 13

Вариант 14

В вертикальном кожухотрубом теплообменнике при давлении 760 мм рт. ст. конденсируется 2140 кг/ч насыщенного пара этанола. Теплообменник выполнен из стали (Ст.3), содержит 127 стальных труб диаметром 29х3 мм. Охлаждающая вода подаётся с начальной температурой 25°С и проходит по трубам со скоростью 0,45 м/с. Коэффициент теплоотдачи со стороны пара 1630 Вт/(м2•К). Потерями тепла пренебречь, стенки труб считать незагрязнёнными. Определить: 1) высоту труб аппарата; 2) составить схему аппарата. (есть решение подробнее 

Скачать решение задачи РХТУ вариант 14

Вариант 15

В вертикальном кожухотрубном теплообменнике со стальными (Ст.3) трубами диаметром 42х2 мм и длиной 1 м протекает водяной раствор, нагреваясь от 20 до 80°С. Коэффициент теплоотдачи от внутренних стенок труб к раствору равен 930 Вт/(м2•К). Число труб в аппарате равно 20. Обогрев ведётся насыщенным водяным паром с давлением 3 ати. Температуру наружных стенок труб (со стороны пара) принять равной 135°С, проверив впоследствии справедливость этого допущения. Термическими сопротивлениями загрязнений поверхности пренебречь. Определить: 1) расход греющего пара; 2) составить схему аппарата.

Вариант 16

В горизонтальном кожухотрубном теплообменнике в межтрубном пространстве охлаждается жидкость от 95 до 35°С. Теплоёмкость жидкости 2,92 кДж/(кг•К). Коэффициент теплоотдачи от этой жидкости к трубам равен 585 Вт/(м2•К). По стальным (Ст.3) трубам теплообменника (диаметр труб 27х2,5 мм) протекает охлаждающая вода, температура которой увеличивается от 15 до 45°С. Скорость воды в трубах 0,4 м/с. Число труб 19. Потерями тепла в окружающую среду пренебречь. Термические сопротивления загрязнений стенок не учитывать. Определить: 1) количество охлаждаемой жидкости (кг/ч); 2) поверхность теплопередачи теплообменника; 3) составить схему аппарата.

Вариант 17

В двухтрубном холодильнике по внутренней стальной (Ст.3) трубе диаметром 27х2,5 мм протекает жидкость со скоростью 1 м/с. Температура жидкости на входе 80°С, на выходе 30°С. Теплоёмкость жидкости 2,94 кДж/(кг•К), плотность 800 кг/м3, теплопроводность 0,41 Вт/(м2•К), вязкость 0,4 сПз. По зазору кольцевого сечения протекает охлаждающая вода, нагреваясь от 15 до 50°С. Коэффициент теплоотдачи от внутренней трубы к охлаждающей воде 935 Вт/(м2•К). Стенки трубы считать незагрязнёнными, потерями тепла пренебречь. Определить: 1) расходы охлаждаемой и охлаждающей жидкостей; 2) поверхность теплопередачи; 3) составить схему аппарата.

Скачать решение задачи РХТУ вариант 17

Вариант 18

В вертикальном кожухотрубном теплообменнике, имеющем 19 труб диаметром 18х2 мм и высотой 1,2 м, при давлении 760 мм рт. ст. конденсируется насыщенный пар этанола. Охлаждающая вода нагревается от 15 до 35°С. Коэффициент теплопередачи 700 Вт/(м2•К). Определить: 1) достаточна ли поверхность теплопередачи для конденсации 350 кг/ч пара этанола (потери тепла не учитывать); 2) какое количество пара этанола (кг/ч) сконденсируется в аппарате, если на поверхности труб образуется слой накипи толщиной 0,5 мм; 3) составить схему аппарата.

Вариант 19

В стальном (марка стали Ст.3) двухтрубном теплообменнике по внутренней трубе диаметром 33х3 мм протекает жидкость со скоростью 0,8 м/с. Температура жидкости на входе 20°С, на выходе 60°С. Плотность жидкости 700 кг/м3, теплоёмкость 2,1 кДж/(кг•К), вязкость 0,45 сПз, теплопроводность 0,41 Вт/(м•К). По зазору кольцевого сечения протекает горячая вода с температурой на входе 90°С, на выходе 50°С. Коэффициент теплоотдачи от воды к внутренней трубе 875 Вт/(м2•К). Потерями тепла пренебречь. Термические загрязнения стенок не учитывать. Определить: 1) расходы теплоносителей; 2) поверхность теплопередачи; 3) составить схему аппарата.

Вариант 20

В змеевиковом подогревателе по стальной трубе (марка стали Ст.3) диаметром 36х3 мм протекает жидкость со скоростью 0,6 м/с. Температура жидкости на входе 15°С, на выходе 85°С. Плотность жидкости 800 кг/м3, теплоёмкость 2,1 кДж/(кг•К), вязкость 0,4 сПз, теплопроводность 0,35 Вт/(м•К). С внешней стороны трубы змеевика обогревается насыщенным водяным паром с давлением 2 ати. Конденсат пара удаляется при температуре насыщения. Коэффициент теплоотдачи от пара к трубе змеевика 9300 Вт/(м2•К). Диаметр витка змеевика 2700 мм. Термическими сопротивлениями загрязнений стенок и тепловыми потерями пренебречь. Определить: 1) количество нагреваемой жидкости; 2) расход пара; 3) поверхность теплопередачи аппарата; 4) составить схему аппарата.

Вариант 21

В горизонтальном кожухотрубном теплообменнике в межтрубном пространстве охлаждается жидкость от 95°С до 35°С. Теплоёмкость жидкости 2,92 кДж/(кг•К). Коэффициент теплоотдачи от этой жидкости к трубам 585 Вт/(м2•К). По стальным (марка стали Ст.3) трубам диаметром 27х2,5 мм протекает охлаждающая вода, температура которой увеличивается от 15°С до 45°С. Скорость воды в трубах 0,4 м/с. Число труб 19. Потерями тепла в окружающую среду пренебречь. Термические загрязнения стенок не учитывать. Определить: 1) количество охлаждаемой жидкости; 2) поверхность теплопередачи теплообменника; 3) составить схему аппарата.

Вариант 22

По внутренней трубе диаметром 36х3 мм стального (марка стали Ст.3) двухтрубного подогревателя протекает жидкость со скоростью 1 м/с. Начальная температура жидкости 25°С, конечная 85°С. Плотность жидкости 850 кг/м3, вязкость 0,4 сПз, теплоёмкость 3,14 кДж/(кг•К), теплопроводность 0,41 Вт/(м•К). В зазоре кольцевого сечения конденсируется насыщенный водяной пар с давлением 1 ати. Конденсат удаляется при температуре пара, коэффициент теплоотдачи от пара к внутренней трубе 7000 Вт/(м2•К). Потерями тепла и термическими сопротивлениями загрязнений стенок пренебречь. Определить: 1) расход греющего пара; 2) поверхность теплопередачи; 3) составить схему аппарата.

Вариант 23

Жидкий толуол в количестве 866 кг/ч подогревается от 20°С до 60°С бензолом, конденсирующимся при нормальном атмосферном давлении в кольцевом пространстве двухтрубного теплообменника. Диаметр внутренней стальной (марка стали Ст.3) трубы теплообменника 44х3,5 мм. Коэффициент теплоотдачи от бензола к стенке составляет 990 Вт/(м2•К). Определить: 1) поверхность теплопередачи; 2) наружную температуру стенки внутренней трубы теплообменника; 3) составить схему аппарата.

Вариант 24

В стальном (марка стали Ст.3) двухтрубном теплообменнике во внутренней трубе диаметром 36х2 мм протекает толуол в количестве 1500 кг/ч и охлаждается от 90°С до 35°С. Между трубами движется охлаждающая вода, нагреваясь от 15°С до 40°С. Коэффициент теплоотдачи от стенки внутренней трубы к воде 580 Вт/(м2•К). Потерями тепла и термичесикми сопротивлениями загрязнений стенок пренебречь. Определить: 1) расход воды на охлаждение; 2) поверхность теплопередачи; 3) составить схему аппарата. 

Скачать решение задачи РХТУ вариант 24

   

Теплообменники. Контрольная I. варианты 25-50

 Российский химико-технологический университет

им. Д. И. Менделеева.
Кафедра процессов и аппаратов химической технологии.

Российский химико-технологический университет им. Д. И. Менделеева                               Кафедра процессов и аппаратов химической технологии

 Вариант 25

На наружной поверхности стального (марка стали Ст.3) змеевика диаметром 28х2 мм и длиной 5 м конденсируется при 760 мм рт. ст. изопропанол. Диаметр витка змеевика составляет 0,3 м. В трубе змеевика протекает вода, температура которой увеличивается от 8°С до 22°С. Коэффициент теплопередачи 700 Вт/(м2•К). Потери тепла незначительны, загрязнениями стенок пренебречь. Определить: 1) количество конденсирующегося спирта (кг/ч); 2) коэффициент теплоотдачи со стороны пара; 3) составить схему аппарата.

Вариант 26

На наружной поверхности змеевика, изготовленнго из стальной (марка стали Ст.3) трубы диаметром 26х3 мм конденсируется при 760 мм рт. ст. 60 кг/ч насыщенного пара изопропилового спирта. Отвод тепла конденсации производится водой, нагревающейся от 10°С до 22°С. Коэффициент теплоотдачи со стороны пара составляет 980 Вт/(м2•К). Диаметр витка змеевика равен 0,23 м. Термическим сопротивлением загрязнений стенок пренебречь. Потери тепла незначительны. Определить: 1) длину трубы, из которой изготовлен змеевик; 2) составить схему аппарата.

Скачать решение задачи РХТУ вариант 26

Вариант 27

В стальных трубах диаметром 20х2 мм и длиной 2 м кожухотрубного теплообменника со скоростью 0,8 м/с проходит бензол и нагревается от 20°С до температуры кипения при 760 мм рт. ст. Греющий насыщенный водяной пар давления 0,8 ати в количестве 3300 кг/ч конденсируется на наружной поверхности труб и его конденсат отводится при температуре конденсации. Коэффициент теплоотдачи со стороны пара равен 10500 Вт/(м2•К). Из-за наличия загрязнений стенок труб коэффициент теплопередачи в аппарате на 25% меньше рассчитанного без учёта этих загрязнений. Определить: 1) поверхность теплопередачи; 2) число труб и число ходов в теплообменнике; 3) составить схему аппарата.

Вариант 28

В стальном (марка стали Ст.3) змеевике подогревается бензол от 20°С до температуры кипения при нормальном атмосферном давлении. Диаметр трубы 56х3 мм, диаметр витка 500 мм. Нагревание осуществляется конденсирующимся на внешней поверхности трубы змеевика насыщенным водяным паром с давлением 0,6 ати. Расход пара составляет 86,5 кг/ч, а коэффициент теплоотдачи от пара к стенке равен 12900 Вт/(м2•К). Потери тепла и термические сопротивления загрязнений стенок не учитывать. Определить: 1) поверхность теплопередачи змеевика; 2) составить схему аппарата.

Вариант 29

Бензол в количестве 880 кг/ч охлаждается от температуры кипения при 760 мм рт. ст. до 20°С во внутренней трубе двухтрубного теплообменника. Длина трубы, изготовленной из стали (марка стали Ст.3), 0,74 м, отношение длины к внутреннему диаметру равно 20, а толщина стенки 4 мм. Хладоагент – толуол – движется противотоком в кольцевом зазоре. Коэффициент теплопередачи от бензола к толуолу 210 Вт/(м2•К). Термические сопротивления загрязнений стенок учесть по их средним значениям для органических жидкостей. Определить: 1) коэффициенты теплоотдачи; 2) составить схему аппарата.

Вариант 30

В стальной (марка стали Ст.3) кожухотрубный кипятильник, имеющий 61 трубу диаметром 25х2 мм и высотой 1 м, поступает при температуре кипения и испаряется при 760 мм рт. ст. толуол. Тепло подводится от конденсирующегося в межтрубном пространстве насыщенного водяного пара с давлением 2 ати. Конденсат не охлаждается. Коэффициенты теплоотдачи со стороны пара и кипящего толуола равны соответственно 10500 и 1630 Вт/(м2•К). Потерями тепла пренебречь, поверхности труб считать незагрязнёнными. Определить: 1) расход греющего пара; 2) расход испаряемого толуола; 3) составить схему аппарата.

Вариант 31

Во внутренней трубе диаметром 29х3 мм стального (марка стали Ст.3) горизонтального двухтрубного теплообменника нагревается 0,75 м3/ч воды от 20°С до 50°С. Нагревание проводится насыщенным водяным паром с давлением 2 ата. Коэффициент теплоотдачи от пара к стенке внутренней трубы 12200 Вт/(м2•К). Термические сопротивления загрязнений стенок учесть по их средним значениям для воды среднего качества и водяного пара. Определить: 1) длину трубы теплообменника; 2) расход греющего пара; 3) составить схему аппарата.

Скачать решение задачи РХТУ вариант 31

Вариант 32

Во внутренней трубе диаметром 27х2,5 мм стального (марка стали Ст.3) двухтрубного теплообменника охлаждается 2000 кг/ч толуола от его температуры кипения до 40°С. Давление 760 мм рт. ст. Охлаждение производится водой, движущейся противотоком. Температура воды на входе в аппарат 15°С. Расход воды 6,1 м3/ч. Коэффициент теплоотдачи от стенки трубы к воде составляет 1400 Вт/(м2•К). Термическими сопротивлениями загрязнений стенок пренебречь. Определить: 1) температуру воды на выходе их теплообменника; 2) длину трубы теплообменника; 3) составить схему аппарата.

Вариант 33

В трубе змеевика охлаждается 3500 кг/ч 100%-ной уксусной кислоты от температуры 60°С до 36°С. Поверхность теплопередачи змеевика 15 м2, диаметр витка 450 мм. Конструкционный материал змеевика – нержавеющая сталь. Охлаждение производится водой, движущейся противотоком, которая нагревается от 15°С до 27°С. Диаметр труб змеевика 51?3 мм. Потери тепла не учитывать. Термические сопротивления загрязнений стенок трубы змеевика учесть по средним их значениям для указанных теплоносителей. Потери тепла не учитывать. Определить: 1) коэффициент теплоотдачи от поверхности труб змеевика к воде; 2) составить схему аппарата.

Вариант 34

Насыщенный пар толуола в количестве 1000 кг/ч конденсируется при 760 мм рт. ст. в кольцевом пространстве двухтрубного теплообменника. По внутренней трубе протекает 4000 кг/ч воды с начальной температурой 10°С. Коэффициенты теплоотдачи со стороны пара толуола и воды равны соответственно 1160 и 960 Вт/(м2•К). Толщина стенки трубы, выполненной из стали (марка стали Ст.3), составляет 4 мм. Потерями тепла пренебречь, стенки труб считать незагрязнёнными. Определить: 1) средние температуры внутренней и внешней поверхностей стенки внутренней трубы; 2) составить схему аппарата.

Вариант 35

В кольцевом пространстве стального (марка стали Ст.3) двухтрубного теплообменника конденсируется при 760 мм рт. ст. насыщенный пар изопропилового спирта. Отвод тепла конденсации производится водой, нагревающейся от 12°С до 26°С. Расход воды во внутренней трубе диаметром 36х3 мм составляет 1300 кг/ч. Коэффициент теплоотдачи со стороны пара равен 1080 Вт/(м2•К), потери тепла в окружающую среду составляют 3350 кДж/ч. Термическими сопротивлениями загрязнений стенок труб пренебречь. Определить: 1) длину внутренней трубы теплообменника; 2) расход греющего пара; 3) составить схему аппарата.

Вариант 36

Метанол в количестве 80 т/ч поступает в трубное пространство одноходового кожухотрубчатого теплообменника, где нагревается от 15 до 40°С горячей водой, поступающей в межтрубное пространство и охлаждающейся от 90 до 40°С. Теплообменник имеет 111 труб диаметром 25х2 мм. Коэффициент теплоотдачи от воды к наружной поверхности труб 930 Вт/(м2•К). Определить: 1) коэффициент теплоотдачи от внутренней поверхности труб к метанолу; 2) длину труб теплообменника.

Вариант 37

Для охлаждения воды, поступающей во внешнюю трубу двухтрубного теплообменника, используется холодильный рассол (раствор хлорида кальция с концентрацией 24,7% масс.) нагревающийся от -25°С до -15°С. Средняя температура воды 4°С. Диаметр внутренней трубы теплообменника 25х2 мм, длина 3 м. Определить во сколько раз увеличится коэффициент теплоотдачи от рассола к поверхности трубы, если скорость движения рассола увеличить с 0,1 м/с до 1,2 м/с.

Вариант 38

В трубном пространстве одноходового кожухотрубчатого теплообменника нагревается от 15 до 42°С метиловый спирт, расход 81 т/ч. В межтрубном пространстве противотоком проходит вода, температура которой изменяется от 90 до 40°С. Коэффициент теплоотдачи от воды к наружной поверхности труб 840 Вт/(м2•К). Число труб теплообменника 111, их внутренний диаметр 25?2 мм. При расчете учесть термические сопротивления загрязнений стенок. Определить: 1) объёмный расход воды (м3/ч); 2) коэффициент теплоотдачи от поверхности труб к метанолу; 3) коэффициент теплопередачи; 4) поверхность теплопередачи и длину теплообменника. 

Скачать решение задачи РХТУ вариант 38

Вариант 39

По кольцевому пространству горизонтального двухтрубного теплообменника со скоростью 0,9 м/с движется 98%-ная серная кислота, охлаждаясь от 80 до 64°С. Во внутренней трубе теплообменника противотоком движется вода, нагреваясь от 20 до 50°С. Диаметры труб 54х4,5 и 26х3 мм. Коэффициент теплоотдачи от поверхности трубы к воде 1400 Вт/(м2•К). Определить: 1) коэффициент теплоотдачи от серной кислоты к поверхности трубы; 2) коэффициент теплопередачи; 3) длину труб теплообменника.

Скачать решение задачи РХТУ вариант 39

Вариант 40

В стальных трубах диаметром 25х2 мм одноходового кожухотрубчатого теплообменника со скоростью 0,75 м/с проходит толуол, нагреваясь от 20°С до температуры кипения. Нагрев осуществляется насыщенным водяным паром, имеющем давление 1 ати. Расход пара 3 т/ч. Коэффициент теплоотдачи со стороны пара равен 10000 Вт/(м2•К). Определить: 1) поверхность теплопередачи; 2) число и длину труб теплообменника; 3) составить схему аппарата.

Вариант 41

В кольцевом зазоре двухтрубного теплообменника движется вода со скоростью 0,5 м/с, нагреваясь от 22 до 46?С. Во внутренней трубе диаметром 45х2 мм противотоком движется хлорбензол охлаждаясь от температуры кипения до 50?С. Расход хлорбензола 3 т/ч. Коэффициент теплоотдачи со стороны хлорбензола 530 Вт/(м2•К). Тепловыми потерями пренебречь. При расчёте учесть термические сопротивления загрязнений. Определить: 1) диаметр внешней трубы; 2) поверхность теплопередачи; 3) составить схему аппарата.

Вариант 42

В стальных трубах (марка стали Х18Н10Т) четырёхходового кожухотрубчатого теплообменника движется нитробензол нагреваясь от 20?С до температуры кипения, насыщенным водяным паром, находящимся под давлением 50 ата и поступающим в межтрубное пространство. Расход пара 10 т/ч. Коэффициент теплоотдачи со стороны пара 9000 Вт/(м2•К). При расчёте пренебречь тепловыми потерями и термическими сопротивлениями загрязнений. Определить: 1) поверхность теплопередачи; 2) число и длину труб теплообменника; 3) составить схему аппарата.

Вариант 43

Для подогрева 0,25 л/с метанола от 20°С до температуры кипения используется насыщенный водяной пар под давлением 4 ата. Нагрев осуществляется в змеевике диаметром 20х2 мм, длиной 5 м, состоящим из 5 витков с диаметром витка 310 мм. Определить: 1) расход пара; 2) запас по поверхности теплопередачи.

Вариант 44

По змеевику проходит 1,5 т/ч толуола, охлаждающегося от 90 до 30°С. Охлаждение производится водой, нагревающейся от 15 до 40°С. Труба змеевика стальная диаметром 57х3,5 мм. Коэффициент теплоотдачи со стороны воды 580 Вт/(м2•К). Диаметр витка змеевика 0,4 м. Определить необходимую длину змеевика и расход воды, учтя термические сопротивления загрязнений стенок.

Вариант 45

В теплообменнике «труба в трубе» производится охлаждение этанола от температуры кипения до 20°С, водой, подающейся в кольцевой зазор и имеющей начальную температуру 7°С. Скорость течения метанола 1,5 м/с, воды – 2 м/с. Теплообменник состоит из труб диаметрами 42х3,5 и 25х3 мм. Трубы теплообменника загрязнённые. Определить: 1) конечную температуру воды; 2) коэффициент теплопередачи; 3) площадь поверхности теплопередачи и длину теплообменника.

Скачать решение задачи РХТУ вариант 45

Вариант 46

В межтрубное пространство кожухотрубчатого конденсатора подаётся при нормальном атмосферном давлении пары бензола. Образующийся конденсат отводится без охлаждения. В качестве хладагента используется вода, поступающая во внутритрубное пространство и нагревающаяся от 20 до 30°С. Скорость воды во внутритрубном пространстве составляет 1,5 м/с. Характеристики конденсатора: диаметр труб 25х2 мм, длина труб 3 м, число труб 384, число ходов 6. Термическими сопротивлениями загрязнений стенок пренебречь. Определить: 1) расход бензола; 2) коэффициент теплоотдачи; 3) запас по площади поверхности теплопередачи.

Скачать решение задачи РХТУ вариант 46

Вариант 50

В теплообменнике «труба в трубе» производится охлаждение метанола от температуры кипения до 25°С, водой, подающейся во внутреннюю трубу и имеющей начальную температуру 10°С. Скорость течения метанола 0,5 м/с, воды – 1 м/с. Теплообменник состоит из труб диаметрами 42х3,5 и 25х3 мм. Термическими сопротивлениями загрязнений пренебречь. Определить: 1) конечную температуру воды; 2) коэффициент теплопередачи; 3) площадь поверхности теплопередачи и длину теплообменника.

Скачать решение задачи РХТУ вариант 50

   

Контрольные задачи раздел 12 Жидкостная экстракция

Задача XII.1. Построить треугольную диаграмму для системы уксусная кислота (В) - вода (А) - изопропиловый эфир (S) по данным табл. ХII-7. Сравнить полученный график с графиком, приведенным на рис. XII-16.

Задача XII.2. Пользуясь данными табл. XI1-1, построить треугольную диаграмму для системы ацетон (В) - вода (А) - трихлорэтан (S) и определить состав слоя трихлорэтана, находящегося в равновесии со слоем воды следующего состава: ХА = 0,57; хв = 0,41; хS = 0,02

Задача XII.3. 100 кг раствора ацетон (В) - вода (A), содержащего 25% ацетона, подвергают одноступенчатой экстракции метилизобутилкетоном (S). Определить минимальное количество экстрагента, количества и концентрации полученных продуктов. Для решения задачи воспользоваться данными табл. XII-3.

Задача XII.4. Определить количества и концентрации рафината и экстракта, полученные при одноступенчатой экстракции трихлорэтаном (S), в количестве 250 кг, из 1000 кг раствора, содержащего 50% ацетона (В) и 50% воды (Л).

Задача XII.5. 75 кг раствора, содержащего 35% ацетона (В) и 65% воды (A), подвергают многоступенчатой экстракции с перекрестным током для получения рафината, содержащего 7,5% ацетона. В каждую ступень подают по 25 кг экстракта (метилизобутилкетон). Определить необходимое число теоретических ступеней экстракции, количества и концентрации продуктов каждой ступени. Данные по равновесию приведены в табл. ХII-3.

Задача XII.6. Раствор, содержащий 50% ацетона (В) и 50% воды (А), подвергают противоточной экстракции четыреххлористым углеродом (5) до получения конечного рафината, содержащего 10% ацетона. Расход раствора составляет 100 кг/ч, а экстрагента - 80 кг/ч. Определить необходимое число теоретических ступеней экстракции, расходы и концентрации в каждой ступени.

Задача XII.7. Смесь, содержащую 40% ацетона (В) и 60% воды (A), подвергают противоточной экстракции метилизобутллкетоном (S). Экстракцию осуществляют на установке, имеющей три теоретические ступени. Зная, что количество используемого для экстракции чистого экстрагента равно количеству исходной смеси, определить состав конечного экстракта. Для решения использовать значения равновесных концентраций, приведенные в табл. ХII-3.

Задача XII.8. Смесь, содержащую 55% ацетона (В) и 45% воды (A), подвергают противоточной -экстракции хлорбензолом с целью получения экстракта, содержащего 92% ацетона и 8% воды (за вычетом экстрагента). Зная, что на 100 кг исходной смеси расходуется 27,5 кг чистого экстрагента, определить: а) составы и количества конечных продуктов (на 100 кг смеси); б) необходимое число теоретических ступеней экстракции. Равновесные данные приведены в табл. ХII-8.

Задача XII.9. По условиям предыдущей задачи определить количества полученного рафината и экстракта без учета экстр агента; найти также необходимое число теоретических ступеней с помощью диаграмм ув - хв и Yв - Хв.

Флореа, Смигельский рисунок к задаче 12.9

   

Контрольные задачи раздел 11 Перегонка и ректификация

Задача XI.1. 100 кмоль смеси бензол - толуол, содержащей 70 мольн. % бензола, подвергают простой перегонке, пока концентрация смеси не достигнет 20 мольн. % бензола. Определить: 1) количество остатка Lк .и 2) концентрацию дистиллята.

Задача XI.2. Эквимолярную смесь пропан - бутан подвергают простой перегонке при давлении 15 атм для отгонки 40 мольн. % исходного количества. Определить: 1) конечную концентрацию остатка и 2) концентрацию дистиллята. Равновесные данные:

Флореа, Смигельский рисунок к задаче 11.2

Задача XI.3. Эквимолярную смесь пропан - бутан подвергают равновесной перегонке при давлении 15 атм до испарения 40% исходной смеси. Определить: 1) равновесный состав жидкой фазы и 2) температуру перегонки. Равновесные данные приведены в предыдущей задаче.

Задача XI.4. Эквимолярную смесь углеводородов, содержащую гексан (1), гептан (2), октан (3) и нонан (4), подвергают простой перегонке до испарения 80 мольн. % исходной смеси. Определить состав кубового остатка и дистиллята. Даны относительные летучести по нонану: а1 = 10; a2 = 4,5; а3 = 2,0; a4 = 1.

Задача XI.5. Смесь, содержащую 10 мольн. % пропана (1), 65 мольн. % н-бутана. (2) и 25 мольн. % н-пентана (3), подвергают равновесной перегонке. Определить: 1) мольную степень разделения и 2) равновесный состав фаз. Даны константы равновесия: k1 = 6,34; k2 = 1,37 и k3 = 0,32.
Задача XI.6. Смесь углеводородов, содержащую 10,2 мольн. % изобутана (1), 11,4 мольн. % н-пентана (2), 15,8 мольн. % изопен-тана (3), 46,6 мольн. % н-гексана (4), 12,5 мольн. % гептана (5) и 3,5 мольн. % н-октана (6), подвергают равновесной перегонке при температуре 160° С и давлении 10 атм. Определить: 1) мольную степень разделения и 2) состав полученных продуктов. Даны константы равновесия: k1 = 3,6; k2 = 1,79; k3 = 1,60; k4 = 0,95; k5 = 0,60; k6 = 0,30.

Задача XI.7. В ректификационной колонне непрерывного действия подвергают разделению смесь бензол - толуол, содержащую 40% бензола. Расход смеси 30000 кг/ч. Дистиллят содержит 97% бензола, а кубовый остаток - 98% толуола. Определить: 1) количества полученных продуктов и 2) число теоретических тарелок по методу Мак-Кэба - Тиле. Флегмовое число R = 3,5.

Задача XI.8. 1000 кмоль смеси бензол - толуол, содержащей 40 мольн. % бензола, подвергают ректификации с целью получения дистиллята, содержащего 95 мольн. % бензола, и остатка, содержащего 96,66 мольн. % толуола. Определить: 1) количество полученных продуктов; 2) минимальное флегмовое число; 3) число теоретических тарелок при бесконечном флегмовом числе; 4) число теоретических тарелок при флегмовом числе R = 1,47 Rmin

Задача XI.9. Определить оптимальное флегмовое число для ректификационной колонны, в которой происходит разделение смеси метиловый спирт - вода. Концентрация метилового спирта в исходной смеси составляет 40%; дистиллят содержит 98,5%, а кубовый остаток 1,5% метилового спирта.

Задача XI.10. Определить действительное число тарелок в рекификационной колонне для получения метилового спирта из его смеси с водой. Исходная смесь содержит 40%, дистиллят 98,5%, а кубовый остаток 1,5% метилового спирта. Расход смеси равен 5000 кг/ч; флегмовое число R = 1,25; диаметр колонны dк = 1,24м; коэффициенты массоотдачи, отнесенные к рабочей площади тарелки, kг=272 кмоль/(м2*ч*y) и kж=380 кмоль/(м2*ч*x) рабочая площадь тарелки составляет 80% сечения колонны.

   

Cтраница 4 из 15

Яндекс.Метрика Rambler's Top100