Типовое решение автоматизации для процесса фильтрования часть 1

Разработка схем автоматизации фильтрования 

При исследовании процесса фильтрования жидких. неоднородных систем рассмотрим в качестве объекта управления барабанный (дисковый) вакуум-фильтр (рис. 4.12). Фильтровальные аппараты устанавливают, как правило, с той же целью, что и центрифуги, поэтому и цели управления в. обоих случаях совпадают. То же можно сказать и о возмущающих воздействиях, а также о выборе таких технологических и конструктивных параметров установки, которые обеспечили бы минимально возможную (для конкретных условий) влажность осадка. Устройства регулирования устанавливают на данном объекте только для обеспечения определенной производительности по осадку. Эта производительность для выбранного типа фильтра может быть выражена следующим образом:

производительность для выбранного типа фильтра где К - постоянный коэффициент; Р - разность давлений до и после фильт¬ровальной ткани; Ст.с - масса твердых частиц на единицу объема жидкости исходной суспензии; Сж.о - объем жидкости в осадке на единицу массы твердых частиц; п - частота вращения барабана (диска); I - часть барабана диска), погруженная в жидкость (определяется уровнем суспензии в ванне); f - кинематическая вязкость жидкости; а -среднее удельное сопротивление осадка.
Как следует из уравнения, производительность VТ пропорциональна (Р n l)0,5. Параметры Р и n не .изменяются при использовании асинхронных двигателей в качестве привода вакуум-насоса и барабана (диска). Поэтому единственным параметром, который следует стабилизировать, будет l, т. е. уровень суспензии в ванне. Регулирующим воздействием в данном случае служит изменение расхода суспензии.
Серьезной опасностью при работе вакуум-фильтров является прорыв фильтровальной ткани, так как через отверстия в ней будет теряться целевой продукт. Для предотвращения таких ситуаций устанавливают датчики мутности фильтрата, а также устройства сигнализации и защиты. Кроме того, на вакуум-фильтре устанавливают еще один датчик сигнализации и защиты - датчик перегрузки электродвигателя барабана.
Контролю подлежат расходы суспензии и фильтрата, уровень жидкости в ванне, разрежение в вакуум-линии, перепад давления до и после фильтровальной ткани, мутность фильтрата, мощность электродвигателя.
Регулирование толщины осадка. Толщина осадка является важнейшим режимным параметром. Увеличение толщины приводит к значительному повышению влажности осадка, поэтому целесообразна стабилизация данного параметра. С этой целью регулирующие воздействия могут быть внесены как изменением вакуума, так и изменением скорости вращения барабана. Необходимо отметить узкий диапазон возможных регулирующих воздействий в последнем варианте, что связано с увеличением влажности осадка при значительном повышении скорости вращения.

Фильтрование газовых систем

Типовое решение автоматизации рассматривается на примере рукавного фильтра с импульсной продувкой (рис. 4.13). 

 Типовая схема автоматизации процесса фильтрования газовых систем

Рис. 4.13. Типовая схема автоматизации процесса фильтрования газовых систем: 1 - корпус фильтра; 2 - рукава; 3 - сопла импульсной продувки; 4 - шнек.

Рукавные фильтры устанавливают, как правило, для полной очистки газа от твердых веществ, являющихся ценным продуктом. Поэтому показателем эффективности процесса будем считать концентрацию твердого вещества в газе на -выходе из фильтра, а целью управления - поддержание его на заданном (минимально возможном для данных условий) значении.
Процесс фильтрования газовых сред во многом аналогичен процессу фильтрования жидких систем. В частности, аналогичны возмущающие воздействия и возможности их ликвидации. В рукавные фильтры дополнительно могут поступать возмущения по каналу сжатого воздуха, подаваемого в сопла для регенерации. Определенные сложности при автоматизации рукавных фильтров создает отсутствие в настоящее время надежных кон-центратомеров пыли. В связи с этим регулируют перепад давления ДР в камерах загрязненного и очищенного газа, который наиболее полно отражает ход процесса:

 

где РТ - перепад давления, обусловленный фильтрующей тканью и неудаляемыми частицами пыли; G - масса пыли, осевшей на единице площади фильтра за определенный промежуток времени; м - вязкость газа; W - скорость газа; К - проницаемость слоя пыли на ткани; р - плотность пыли; g - ускорение свободного падения.
Из уравнения следует, что регулировать перепад P можно лишь изменением массы пыли G, так как остальные параметры обусловлены ходом предыдущего технологического процесса. Регулирование осуществляется следующим образом. При достижении максимального перепада позиционный регулятор выдает сигнал на электромагнитные клапаны, установленные на магистрали сжатого воздуха. Клапаны открываются, импульсы сжатого воздуха через сопла поступают в рукава и деформируют ткань, сбивая при этом пыль. Регенерация ткани происходит до достижения минимального перепада давления.
Качественная регенерация фильтрующей ткани рукавов будет осуществляться только при определенном значении давления сжатого воздуха, подаваемого на продувку. Для стабилизации этого давления устанавливают регулятор.
Контролю и сигнализации подлежат следующие параметры: температура загрязненного газа (фильтровальная ткань рассчитана только на определенные температуры), давление сжатого воздуха, перепад давления. При критических значениях давления сжатого воздуха и перепада давления (превышение критического значения перепада приводит к разрыву ткани) срабатывает устройство защиты, отключающее рабочий фильтр и включающее резервный. Контролю подлежит расход газового потока.

Функциональная схема автоматизации рукавного фильтра

Автоматизация газового фильтра

Регулирование по жесткой временной программе.

Измерение давления газовых пылевых потоков связано с определенными трудностями, так как импульсные трубки забиваются пылью и искажают показания приборов. С другой стороны, при стабильном технологическом режиме появляется возможность отказаться от регулирования по перепаду Р и перейти на управление по жесткой программе, в которой задается определенная длительность импульсов сжатого воздуха и пауз между ними. Для реализации такой программы устанавливают командный прибор, который управляет объектом по временной программе независимо от состояния фильтра.

Фильтрование жидкостей

В качестве объекта управления при фильтровании жидких си­стем примем барабанный (дисковый) вакуумфильтр. Фильтровальные аппараты устанавливают, как правило, с той же целью, что и центрифуги, поэтому и цели управления в обо­их случаях совпадают. То же можно сказать и о возмущающих воздействиях, а также о выборе таких технологических и кон­структивных параметров установки, которые обеспечили бы ми­нимально возможную (для конкретных условий) влажность осадка. Устройства регулирования устанавливают на данном объекте только для обеспечения определенного уровня суспен­зии в ванне. Регулирующим воздействием в данном случае слу­жит изменение расхода суспензии.

Серьезной опасностью при работе вакуум-фильтров является прорыв фильтровальной ткани, так как через отверстия в ней будет теряться целевой продукт. Для предотвращения таких си­туаций устанавливают датчики мутности фильтрата, а также устройства сигнализации и защиты. Кроме того, на вакуум- фильтре устанавливают еще один датчик сигнализации и защи­ты— датчик перегрузки электродвигателя барабана.

Контролю подлежат расходы суспензии и фильтрата, уро­вень жидкости в ванне, разрежение в вакуум-линии, перепад давления до и после фильтровальной ткани, мутность фильт­рата, мощность электродвигателя.

Регулирование толщины осадка. Толщина осадка является важнейшим режимным параметром. Увеличение толщины при­водит к значительному повышению влажности осадка, поэтому целесообразна стабилизация этого параметра. С этой целью регулирующие воздействия могут быть внесены как изменением вакуума, так и изменением скорости вращения барабана. Необ­ходимо отметить узкий диапазон возможных регулирующих воздействий в последнем варианте, что связано с увеличением влажности осадка при значительном повышении скорости вра­щения.

Схема автоматизации диского вакуум-фильта

Функциональная схема автоматизации фильтрования


Ваша корзина пуста.

Мы в контакте

Моментальная оплата
Моментальная оплата
руб.
счёт 410011542374890.