Контрольные задачи раздел 5 Теповой баланс

Задача V. 1. Определить теплоту парообразования анилина при давлении р=0,2 атм, если, температура кипения анилина при атмосферном давлении составляет 184° С, давление паров анилина при 160° С равно 390 мм рт. ст.
Указание. В качестве стандартной жидкости принять воду.

Задача V.2. Давление паров ацетона при 60, 70, 80, 90 и 100° С составляет соответственно 1,14; 1,58; 2,12; 2,81 и 3,67 атм. Определить теплоту парообразования ацетона при 80° С следующими методами:
а) графическим определением производной dp/dT
б) путем замены производной dp/dT отношением конечных разностей;
в) интегрированием уравнения Клаузиуса - Клапейрона;
г) при использовании в качестве стандартной жидкости воды.
Плотность парообразного и жидкого ацетона при равновесии и температуре 80° С составляет соответственно 4 и 719 кг/м3.

Задача V.3. Определить теплоту парообразования бензола при 160°С. Теплота парообразования при температуре кипения бензола 80,1°С и атмосферном давлении составляет г=3,95-105 Дж/кг. Критическая температура бензола tкр = 288,5°С. Сравнить полученный результат с экспериментальным значением теплоты парообразования г = 3,36*105 Дж/кг.

Задача V.4. Определить, какое количество тепла выделяется при смешении 3 кг 90%-ного раствора Н24 с 4 кг 20%-ного раствора этой кислоты.
Указание. Использовать рис. V-1.

Рис. V-1. – Теплоты растворения кислот

Рис. V-1. – Теплоты растворения кислот

Задача V. 5. Определить температуру жидкости при смешении 4 кг 50%-ного раствора NаОН и 2 кг 15%-ного раствора NаОН. Начальная температура растворов 20° С.
Указание. Для определения теплоты смешения использовать рис.V-2. Удельную теплоемкость растворов NaOH определить по соответствующей формуле из табл. V-1.

Задача V.6. Определить энтальпию перегретых паров бензола при давлении 2230 мм рт. ст. и температуре 450° С. Удельная теплоемкость жидкого бензола 1730 дж/(кг-град); мольная теплоемкость паров бензола См = -8,65 + 0,1158T - 7,54*105T + 1,854-10-8 T3 кал/ (моль - град) [температура выражена в °К]. Теплоту парообразования определить по данным примера (V. 3). Температура кипения бензола при давлении 2230 мм рт. ст. равна tК=120°С.
Указание. Отсчет энтальпии производить от жидкого бензола при 0°С.

Задача V.7. Определить расход воды, необходимой для конденсации 5 м?/сек насыщенных водяных паров при давлении 0,2 атм. Охлаждающая вода входит в конденсатор смешения при температуре 20°С и выходит вместе с конденсатом при 50° С.

Задача V.8. В кристаллизаторе получают 2 т/ч кристаллов FeSO4-7Н2О. Концентрированный раствор входит при температуре 50° С и охлаждается до 25° С. Растворимость сернокислого железа составляет 47,6 части на 100 частей воды при 50° С и 29,8 части на 100 частей воды при 25° С. Определить расход охлаждающей воды, если ее начальная температура составляет 12° С, а конечная 20° С. Удельная теплоемкость концентрированного раствора равна 0,7 ккал/(кг •-град); теплота растворения сернокислого железа qp = 4,4 ккал/моль.
Указание. Удельные теплоемкости растворов вычислять, используя правило аддитивности.

Флореа, Смигельский рисунок к задаче 5.8

Задача V. 9. Определить, до какой температуры можно перегреть 500 кг/ч водяного пара, имеющего температуру 120°С и получающего тепло от топочных газов, содержащих 40 объемн.% СO2 и 60 объемн.% N2. При этом газы охлаждаются от 580 до 300° С. Расход газов составляет 945 кг/ч. Теплоемкости Ср газов, выраженные в кал/(моль-град), изменяются с температурой t (°С) следующим образом:

Задача V. 10. Два резервуара объемом 3 м3 каждый наполнены водой при температуре 25°С. Оба резервуара имеют мешалку, обеспечивающую полное перемешивание. В определенный момент в первый резервуар начинают подавать 2,5 кг/сек воды при 90°С. Вода, выходящая из первого резервуара, поступает во второй. Определить температуру воды во втором резервуаре через 30 мин после начала подачи теплой воды.
Указание. Так же как и в примере V.5, вывести уравнение для температуры воды на выходе из первого резервуара как функции от времени, а затем подставить это выражение в уравнение теплового баланса второго резервуара. Требуемую температуру определить интегрированием полученного дифференциального уравнения.

Задача V. 11. Через резервуар с мешалкой (объем резервуара 5 м3) циркулирует G=1 кг/сек раствора. Температура раствора на входе и в резервуаре равна 20°С. Определить время, требуемое для нагревания раствора в резервуаре до 60°С, не прерывая подачи свежего раствора, а также максимальную температуру нагревания раствора, если тепловой поток, поступающий в резервуар, составляет (Q = 200 000 вт. Плотность раствора р=1100 кг/м3; удельная теплоемкость с = 3800 Дж/(кг-град).
Указание. Так как резервуар снабжен мешалкой, обеспечивающей полное перемешивание, можно считать, что температура раствора на выходе равна температуре в резервуаре.

Задача V. 12. По данным примера V.6 написать уравнение теплового баланса для бесконечно малого интервала времени, которому соответствует изменение температуры воды на величину dt. Показать, что при интегрировании дифференциального уравнения теплового баланса получается такое же выражение для изменения температуры во времени, как и в примере V. 6.
Указаний. Бесконечно малыми величинами второго порядка пренебречь.


Ваша корзина пуста.

Мы в контакте

Моментальная оплата
Моментальная оплата
руб.
счёт 410011542374890.